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Abstract

The focus of this study is the selection of an appropriate set of features for a feed forward
neural network model used to predict both future market direction and future returns for the
S&P 500 Index. The experimental results provide evidence that the proposed feature selection
process may result in a more successful prediction model. However, the study also indicates that
the problem domain may need to be limited to predicting monthly instead of daily movements.
In addition, the proposed process could be more useful for predicting the future market direction

rather than actual returns.

1. Introduction

While the application of neural networks to financial forecasting is beginning to receive academic
attention [Freedman 1995], the issue of feature selection for financial forecasting problems has
been largely ignored. Feature selection refers to choosing a subset of parameters (or features)
from a larger pool of input information (technical and/or fundamental indicators) for designing
a prediction system in a manner that preserves as much of the original information as possible.
This issue is important because an appropriate combination of most significant features leads to

faster computation and require fewer training examples for successful generalization as compared
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to the use of all available features [Battiti 1994]. This is especially important for gradient-based
neural network algorithms because they are computationally very expensive and do not scale up
well [Orfanidis 1990]. Therefore it is important to reduce the feature set as much as possible while
minimizing the predictive information loss.

The focus of this study is the development of a preprocessing procedure for the selection of a set
of features used to predict future movements in the S&P 500 Composite Index. The selected features
are used in a K-nearest neighbor classifier and in a feed forward neural network model utilizing
the back propagation learning method. The objectives are to address both feature and model
selection for different problem domains (monthly versus daily data, predicting market direction
versus predicting returns). Previously, an interesting neural network architecture called SupNet
has been applied to feature selection for currency exchange rate prediction problem [Tenorio 1993].
In the SupNet the training data is clustered into a predetermined number of groups and a distance
to cluster centers is used to classify the test data. The total number of misclassifications on the
test set is used to assign a numerical penalty values to individual features and groups of features
clustered together. A sequential elimination technique (backward selection) is used to remove the
features that are assigned large penalties. The algorithm stops when none of the feature subsets
are assigned a penalty smaller that its parent.

Although quite interesting, the SupNet feature selection process is potentially fragile as it is
based on a single selection technique (the SupNet algorithm) and a single selection measure (dis-
tance to cluster centers). Our study is proposing a potentially more robust feature selection process
based on an integration of several combinations of the selection techniques and selection criteria.
Sections 2.1 and 2.2 provide the details of the feature selection techniques and criteria used in this
study. Section 2.3 discusses the proposed feature selection process and Section 2.4 describes the
neural network model and learning process. Results and analysis for separate experiments using

monthly and daily data are presented in Sections 3.1 and 3.2.



2. Methodology

This study considers financial forecasting both as a market direction problem (ie. predicting the
value of a discrete variable) and a returns prediction problem (ie. predicting the value of a contin-
uous variable). In the market direction prediction problem, the class one corresponds to a future
positive move in the S&P Composite Index (ie. the value of the index increased during the period)
while class two corresponds to a future negative move (ie. the index decreased in value during the
period. For the returns prediction problem the actual future return for the next period is predicted,
where the return is defined as the percentage increase/decrease in the index value for the future

period.

2.1. Selection Techniques

In predicting the market direction, a feature selection technique is implemented as a search algo-
rithm that attempts to determine a subset of the existing features which maximizes the differences
between the two classes just described based on performance criteria explained in Section 2.2. This
section briefly describes the selection techniques used in the proposed feature selection process.
More details can be found in Fukunaga [1990].

The Best Feature selection technique orders the features from the best to the worst based on
the utilized selection criterion. The Sequential Forward Search selection technique begins with an
empty feature set and adds features to it one at a time. The first feature added is the one deemed
to be the best according to the selection criterion. The next feature added is the one which results
in the largest improvement when considered in conjunction with the first feature. Similarly, the ‘P
feature added is the one that results in the largest improvement when considered in conjunction
with the previous ¢ — 1 features. The Sequential Backward Search selection technique is similar
to the sequential forward search, except that the initial set contains all the features, and features

are removed from this set one at a time. The first feature removed is the one that results in the



smallest degradation when the remaining features are considered together. This process repeats
until the feature set reaches a predetermined size.

Each of the above selection techniques has its strengths and weaknesses. The Best Feature
technique is very fast and as such is suited for a quick, rough partition of a large feature set.
However, choosing the j features based only on the Best Feature technique is not likely to give
satisfactory results as this technique considers features by themselves rather than in combination
with other features.

Both the Sequential Forward Search and the Sequential Backward Search do consider features
in combination and as such are finer grained techniques. However, both techniques are significantly
more computationally expensive, demanding computing time that is quadratic in the number of
features as compared to the linear time needed by the Best Feature technique. In addition, with
Sequential Forward Search once a feature is added to the features set it cannot be removed. With
Sequential Backward Search once a feature is removed it cannot be added later. As such, both
Sequential Forward Search and Sequential Backward Search are greedy heuristics and neither can

guarantee that an optimal set of features is achieved.

2.2. Selection Criteria

Feature selection is conducted considering only discrete variable prediction (the market direction
problem), and the resulting feature set used for both the discrete and continuous variable prediction
problems (the market direction and return prediction problems respectively). Each feature selection
criterion is either an estimation of the classification error or a measure of the distance between
classes. Therefore the selection criteria objective is to either maximize some measure of intra-class
separation or to minimize the estimated classification error. This section describes the selection
criteria used in the proposed feature selection process, all of which are described in more detail in
Fukunaga [1990].

The Estimated Minimal Error Probability selection criterion is an estimate of Bayes error for



the data set by applying the K-nearest neighbor classifier [Cover, Hart 1967] to the training set
utilizing the leave one out approach. This tends to overestimate the error and as such gives a very
conservative error estimate. The selection criterion then becomes finding a set of features that
minimizes the estimated Bayes error.

The Euclidean, Patrick-Fisher, Mahalanobis, and Bhattacharyya distances are all means of
measuring the multidimensional separation between two disjoint classes of data. The Fuclidean

distance is defined as

V(8 = M) (M, — M), (1)
where M; and M;, are vectors whose components are the average values for each feature in data
classes one and two respectively. For example, for data sets with 2 features, M; and M, would
each have two components, M; = (ml, ml), My = (m?, m2), where m} is the average value of the

first feature for all data belonging to class one and m}, m?, and m2 are defined similarly.

The Patrick—Fisher distance is defined as
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where M; and Mj are as previously defined and ¥; and ¥, are the covariance matrices for data

classes one and two respectively. The Mahalanobis distance is defined as
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where My, M, X1 and X5 are defined as above. And finally, the Bhattacharyya distance is defined
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where the first term in equation (4) measures the class separability due to the mean difference,
while the second term measures the class separability due to the covariance-difference.
The selection criteria used in the proposed feature selection process is to maximize the separation

between the market direction classes based on any of the above distance measures.



2.3. The Proposed Feature Selection Process

Depending on the size of the initial feature set, either a one or two phase feature selection process is
proposed. If the initial feature set is relatively small, it may be possible to reduce it to the final set
in one phase using Sequential Forward and Sequential Backward Search techniques. However, both
techniques require computational time that is quadratic in the number of features being searched.
For large feature sets the amount of computational work required may be reduced by application
of a two phase approach. The first phase quickly reduces the initial feature set to an intermediate
set of manageable size using the Best Feature approach. Then in the second phase the finer but
more expensive Sequential Forward and Sequential Backward Selection techniques can be applied
to the intermediate feature set to derive the final set. The first phase reduction is accomplished in
computational time linear to the number of features in the initial feature set. The second phase
takes computational time that is quadratic in the number of features remaining after the first phase
reduction.

In addition to computational efficiency, another important issue is how to deal with instability
problems. A feature selection procedure is unstable if a small change in the data used in the
selection process results in drastic changes in the selected feature set. Recently, it was suggested
by Breiman [1994] that unstable procedures can be stabilized by averaging the results from several
different feature selection processes. Therefore, to reduce the level of instability this study is
performing feature selection using several combinations of the selection techniques and selection
criteria discussed earlier. The obtained partial results are integrated using either a frequency
process or a ranking process explained as follows.

Frequency Process

The proposed frequency process counts the number of times a feature appears in the “top m
features set” as determined by various combinations of selection techniques and criteria. A specific

selection technique and performance criterion (ie. Sequential Forward Search attempting to maxi-



mize the Bhattacharyya distance) is used to determine a set of top m features. A counter for each
of the m features selected in this manner is incremented by one and the process repeated using a
different selection technique and selection criterion combination. When the feature selection pro-
cess is completed for all combinations of the selection techniques and criteria, the counter for each
feature contains the frequency with which that feature appeared in the set of “top m features.”
The reduced feature set comprises the m features with the largest frequency values.

Ranking Process

An alternative to the frequency process is to use a ranking process, where a specific selection
technique and selection criterion combination is used to determine a rank ordering of the features
from best to worst with scores assigned to the features based on this ordering (one is the best, p is
the worst, where p is the total number of features). The process is repeated using other selection
technique and selection criterion combinations and the scores summed. The reduced feature set is

then comprised of the m features with the lowest scores.

2.4. The Learning Process

The stock market is modeled using a single hidden layer feed forward neural network with back
propagation learning [Rumelhart, et. al 1986]. The input layer units correspond to the pattern
features, while the value of the output layer unit indicates either future market direction for the
discrete variable prediction problem or the predicted return for the continuous variable prediction
problem. For both the discrete variable prediction problem and the continuous variable prediction
problem the input patterns are the same; what changes is the target output value. For the discrete
prediction problem a target value of one corresponds to an increase in the value of the index and
minus one corresponds to a decrease in the value. For the continuous prediction problem the target
value is the actual index return (percentage increase/decrease in the index) for the next period.
The learning scheme used in this work consists of a sequence of training/prediction sessions

where the ANN is retrained after each session using more recent information. This is achieved



Table 1: ANN Parameter Values Used in All Experiments

by training the ANN using patterns from a fixed size window covering a continuous time segment
of historic data. The target value for the ANN is either the market direction (for the discrete
prediction problem) or the actual return (for the continuous prediction problem) for the time unit
immediately following the training window. After a single prediction step the training window is
shifted forward one time unit (ie. one trading period), the patterns from the new window are used
to retrain the ANN, and a prediction is made for the next time unit. This process is repeated until
the data set is exhausted. It is important to note that the ANN is retrained after every prediction.
In other words the ANN is trained and one prediction is made. The window is shifted forward
one period (which means the test pattern for the previous window is now in the training set) and

another prediction made. The process is repeated until the data is exhausted.

3. Experimental Results and Analysis

The static ANN parameters used in all experiments discussed in this paper are shown in Table 1.
The dynamic parameters are described in the specific experiment descriptions. For all experiments
the data values were scaled into the (-1,1) range.

For monthly experiments, the 170 months of data from January 1973 to February 1987 comprised
the initial training set with actual predictions (both discrete and continuous) made for the 70 month
period from March 1987 to December 1992. For daily experiments, the initial training window

was comprised of either 250 patterns (December 28, 1987 to December 16, 1988) or 500 patterns



(December 29, 1986 to December 16, 1988). For all daily experiment (both discrete and continuous)

test prediction were made for the 1,273 patterns from December 19, 1988 to December 31, 1993.
The prediction performance metrics used in the experiments are the annual rate of return (ARR),

the directional symmetry (DS), and the sharpe ratio (Sharpe). Following Hutchinson [1993], the

annual rate of return is defined as

k n
ARR = — i 5
- ; r (5)
where n is the total number of trading periods, k is the number of trading periods per year (k =

12 for monthly data, & = 253 for daily data), and r; is defined as

a

| if the market direction is correctly predicted

"= { —|r¢| otherwise (6)
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where r? is the actual return for the S&P 500 index for period ¢. For comparison purposes the
simple buy and hold ARR for the monthly test data is 8.76% and for the daily test data is 11.49%.
The ARR for an ideal model with perfect prediction (r; = »¢ for all 1 < 7 < n) is 42% for monthly
data and 147% for daily data.

Following Caldwell [1995], the directional symmetry metric is defined as

100 d;
1=1

n

DS =
where

0 otherwise

di:{ 1 if (pg)(r®) > 0 (8)

The variable p; is defined either as the predicted return for period 7 (for continuous variable pre-

diction experiments) or as

- J 1 if S&P index increases in value over period 2
ps —1 otherwise



for the predicted market direction experiments (discrete variable predictions). In addition to mea-
suring the DS on the set of all n predictions, in our experiments the DS is also computed for
sets of large and small market movements. The overall prediction set (All) is the set of all 2-

tuples (p;,7¢), 1 < j < n, for a specific ANN experiment consisting of n trading periods. The

a
1

small prediction set (Small) is the subset of the All 2-tuples (p;,7?) where r? is below the me-
dian value. More precisely, Small is defined as Small = {(p;,r?) : *? < h} where constant h is
selected s.t. #{r? : r? < h} = #{r? : r? > h}. Similarly, the large prediction set (Large) is the
subset of the All 2-tuples (p;,r?) where ¢ is above the median value, defined more precisely as
Large = {(pi,r?) : ¢ > h}.

The Sharpe ration is a widely used metric [Caldwell 1995] that attempts to normalize returns
according to the risk of the trading strategy. The sharp ration is defined as
ooy

=1

=1

(10)

Sharpe =
no,

where ¢ is defined previously, o, is the standard deviation of the elements in the set {r{ : 1 < <
n}, and rzf is the risk free return for period :. For all experiments in this study the rzf is the return

on U.S. Treasure Bills for period .

3.1. Monthly Data Experiments

The complete monthly data set m1 contains 29 features. A second feature set m2 is comprised of
seven features from the complete set selected based on an intuitive feel for which features would
make a good classifier. The final monthly feature sets m3 and m4 were constructed by selecting
eight features from the complete set based on the formal feature selection techniques and criteria
presented in Sections 2.1 and 2.2. A list of all 29 monthly features and their set membership in m1,
m2, m3 and m4 appears in Table 4 in the appendix. The ANN architecture parameters in common

with all experiments in this study are displayed in Table 1 while the number of input units (UT)



and hidden units (HU) for different monthly experiments are shown in Table 2.

The features that comprise m3 and m4 were selected using the frequency process and the
rank process respectively, both of which are discussed in Section 2.3. To obtain m3 and m4 all
combinations of the selection techniques and performance criteria discussed in Sections 2.1 and
2.2 are used for individual independent feature selection experiments. For example, Sequential
Forward Search selection is performed first using the Estimated Minimal Error Probability criterion,
then Mahalanobis Distance, etc. The frequency with which a feature appeared in the “seven best
features set” in individual feature selection experiments was computed and the eight features with
the highest frequency scores collected in m3. The initial objective was to have the same number of
features as the intuitive set m2 (seven); however eight were included because of a frequency score
tie between the seventh and eighth features. The features in m4 were selected by first scoring each
feature in ml as discussed in the rank process portion of Section 2.3 and selecting the eight features
with the lowest scores.

K-Nearest Neighbor Experiments

First, the quality of the feature selection process was tested using a simple K-nearest neighbor
(KNN) classifier [Cover, Hart 1967]. For each of the four data sets (m1, m2, m3, m4) three KNN
experiments were conducted with K equal first to one, then two, and finally three. The average DS
results for the three experiments are displayed in Figure 1 for each data set along with the high DS
value representing the best result for the three experiments.

A comparison of the average DS of the KNN classifier for all four data sets indicates that the
feature selection process did reduce ml to m3 and m4 with no significant reduction in performance
(in fact performance increased). The KNN classifier also indicates that m4 results in a better
classifier than m3, indicating that the ranking process works better than the frequency process. In
addition, Figure 1 shows a decrease in performance for m2 indicating that the intuitive feature set

(m2) contains little predictive information.



Figure 1: KNN for Discrete Prediction on Monthly Data

ANN Discrete Prediction Experiments

Next, for each monthly feature set the following ANN experiments were conducted. First the
problem was treated as a discrete variable prediction problem where the goal was to predict the
market direction. As shown in Table 2, the results support the KNN finding that m1 was reduced
to m3 and m4 with little or no reduction in performance (somewhat smaller ARR achieved with
smaller number of trades). In addition, m3 and m4 indicated better performance for the DS
metrics when compared to ml as evident from Figure 2. It is important to note, in contrast to the
KNN system, that an ANN trained using intuitively selected m2 data had better results than one
trained using all m1 data. This indicates that the ANN was able to detect relationships the KNN
classifier could not.

Comparing the ARR values to those achieved using the buy and hold strategy (8.76%) shows
that the AN N was able to achieve returns comparable to the buy and hold strategy. However, it is
important to note that transaction costs were not considered in this study. Including transaction
costs would undoubtedly result in the buy and hold strategy having a superior ARR in all instances.

ANN Continuous Prediction Experiments

In the final set of experiments on monthly data, for each monthly feature set the goal was
to predict the actual market return (continuous variable prediction problem) for the following
month. As shown in Table 2 and Figure 3, the m4 based ANN predictor did better than m3 on

ARR, Sharpe, and DS metrics and also better than the buy and hold, indicating that the ranking



Figure 3: DS for Continuous Variable Prediction Using Monthly Data



feature selection process transfers better to a prediction domain than the frequency feature selection
process. Therefore, the daily data experiments reported in Section 3.2 use only the ranking selection

process.

3.2. Daily Data Experiments

The complete daily data set d1 contains 67 features. The features that comprise the reduced
feature set d3 were selected using the two phase process discussed in Section 2.3. In phase one the
67 features in the initial set d1 were reduced to the 30 features in the intermediate set d2. This
involved the use of the Best Feature selection technique along with the Estimated Minimal Error
Probability, Bhattacharyya distance, and Euclidean distance criteria. The size of the intermediate
feature set was limited to thirty. It was desirable to include as many features in d2 as possible.
However, with more than 30 features the feature selection techniques used in phase two become very
computationally expensive. In phase two the 30 features in d2 were reduced to the seven features in
d3. This was accomplished using the Sequential Forward and Sequential Backward Search selection
techniques along with the same criteria as used in phase one. The individual selection technique
and performance criteria scores were integrated using the ranking process described in Section
2.3. A list of all 67 monthly features and their membership in sets d1, d2, and d3 are shown in
Tables 5 and 6. The ANN architecture parameters in common with all experiments in this study
are displayed in Table 1 while the number of input units (UI) and hidden units (HU) for different
daily experiments are shown in Table 3.

K-Nearest Neighbor Experiments

The daily problem was first treated as a discrete variable prediction problem where the goal
was to predict the direction of the S&P 500 index. For each of the three data sets (d1, d2, d3)
three KNN experiments were conducted with K equal first to one, then two, and finally three. The
average DS results for the three experiments are displayed in Figure 4 for each data set along with

the high DS value representing the best result for the three experiments. The KNN classifier results



Figure 4: KNN for Discrete Prediction Using Daily Data

show an increase in the overall directional symmetry (the All set) from d1 to d2 and from d2 to d3,
indicating that both phases of the feature selection process improved the classification capabilities
of the system.

ANN Discrete Prediction Experiments

The initial ANN experiment uses a training window size of 250 patterns. The ARR results,
illustrated in Table 3, show improvement from the ANN trained using d1 to the one trained using
d2. However, the improvements from reducing d2 to d3 — 250 (ie. data set d2 with training window
of size 250) noticed in the KNN classifier were not evident in the ARR for the ANN. The Small and
Large data set DS values shown in Figure 5 indicate that there was no significant difference in the
performance of the the three feature sets. One possible explanation is that the training window size
of 250 patterns was to small. Therefore an additional experiment using d3 and a training window
size of 500 (ie. d3-500) was conducted to determine if a larger window size improved the results.
As shown in Figure 5, the DS results using a larger training window was uniformly better across
all measures. However, in no instance was the ANN able to achieve a better ARR (Table 3) than
that achieved by the buy and hold strategy (11.49%).

ANN Continuous Prediction Experiments

Finally the problem was treated as a continuous variable prediction problem in which the goal
was to predict the actual market return for the next day. Initially these experiment also used a

window size of 250 patterns. Results for these experiments were universally worse than the results



Figure 5: DS for Discrete Variable Prediction Using Daily Data

for the discrete variable prediction problem and as such are not worth presenting. An additional
experiment using d3 and a training window size of 500 was conducted to determine if a larger
window size improved the results. The results (ARR =-4.64%, Sharpe =-0.042, and DS values
50.75, 51.49, and 50.00 for sets All, Small, and Large respectively) were not significantly different
from those achieved with a training window of size 250 and much worse than those achieved for

the discrete variable prediction problem.

4. Conclusions

The results from this study provide evidence that some form of explicit feature selection should be
considered in determining the feature set used in building a predictive model of the S&P 500 index.
While a feature set based on the experience and intuition of the developer may seem reasonable on
the surface, it might actually contain very little predictive information and should be verified using

formal feature selection techniques. In this study, the intuitive features and the formally selected



reduced feature set had no features in common. For the KNN classifier, the reduced feature set
performed much better than the intuitive set. However, it should be noted that the ANN based on
the intuitive feature set did perform adequately.

This study indicates that a feature selection process based on a classification problem does not
readily transfer to a prediction problem. Results from the continuous variable prediction problem
using reduced sets were unsatisfactory for both monthly and daily experiments.

Results for the discrete variable prediction problem indicate that an ANN could be useful in
predicting future stock market movements. In particular, it is interesting to note that the ANN
appeared to perform satisfactorily when predicting movements greater than the median return.
However, the study does indicate that the problem domain may need to be limited to predicting
monthly movements, not daily movements, and that the ANN could be more useful to predicting
future market directions rather than actual returns. The results provide partial evidence that the
feature reduction approaches presented here may result in a more successful prediction model.
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Table 4: Complete Set of Features Used in Monthly Experiments



Table 5: Top Thirty Features Used in Daily Experiments



Table 6: Remaining Features Used in Daily Experiments



