Financial Time Series Forecasting by Neural Networ k
Using Conjugate Gradient Learning Algorithm and
Multiple Linear Regression Weight Initialization

CHAN Man-Chung, WONG Chi-Cheong,

Department of Computing

The Hong Kong Polytechnic University
Kowloon, Hong Kong

csmcchan@comp.polyu.edu.hk  cscowong@comp.polyu.edu.hk

LAM Chi-Chung

Abstract

Multilayer neural network has been successfully applied to the time series forecasting. Steepest descend, a
popular learning algorithm for backpropagation network, converges slowly and has the difficulty in
determining the network parameters. In this paper, conjugate gradient learning algorithm with restart
procedure is introduced to overcome these problems. Also, the commonly used random weight initialization
does not guarantee to generate a set of initial connection weights close to the optimal weights leading to slow
convergence. Multiplelinear regression (MLR) provides a better alternative for weight initialization.

The daily trade data of the listed companies from Shanghai Stock Exchangeis collected for technical analysis
with the means of neural networks. Two learning algorithms and two weight initializations are compared.
The results find that neural networks can model the time series satisfactorily, whatever which learning
algorithm and weight initialization are adopted. However, the proposed conjugate gradient with MLR weight
initialization requires a lower computation cost and learns better than steepest decent with random
initialization.

Keywords: time series forecasting, technical analysis, learning algorithm, conjugate gradient, multiple linear regression weight
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1. Introduction

Detecting trends of stock data is a decison support
process. Although the Random Walk Theory dams that
price changes are seridly independent, traders and certain
academicg4] have obsarved that there is no efficient
market. The movements of market price are not random
and predicteble.

Statistical methods and neural networks are commonly used
for time series prediction. Empirica results have shown
that Neural Networks outperform linear regresson[1,18,32)
since gock markets are complex, nonlinear, dynamic and
chaotic[22]. Neurd networks are rdiable for modding
nonlinear, dynamic market sgnag15]. Neurd Network
makes very few assumptions as opposed to normality
assumptions commonly found in dSatistical methods.
Neurd network can perform prediction after learning the
underlying relationship between the input variables and
outputs. From a detidician’'s point of view, neurd
networks ae andogous to nonparametric, nonlinesr
regresson modds.

Backpropagation neurd network is commonly used for
price prediction. Classca backpropagation adopts first-

order steepest descent technique as learning dgorithm
Welghts are modified in a direction that corresponds to the
negative gradient of the error suface.  Gradient is an
extremely loca pointer and does not point to globa
minimum. This hill-dimbing search is in zigzag motion and
may move towards a wrong direction, getting stuck in a
locd minimum. The direction may be spoiled by
subsequent directions, leading to dow convergence.

In addition, clasica backpropagation is sengtive to the
parameters such as learning rate and momentum rate. For
examples, the vaue of learning rate is critical in the sense
that too smdl vaue will make have dow convergence and
too large vaue will make the search direction jump wildly
and never converge. The optima vaues of the parameters
aredifficult to find and often obtained empirically.

Customary random weight initidization does not guarantee
agood choice of initid weight vaues. The random weights
may be far from a good solution or near locd minima or
saddle points of the error surface, leading to adow learning

To overcome the deficiencies of stegpest descent learning
and random weight initidization, some researcheq19,29]
have investigated the use of Gendic Algorithms and
Simulated Annedling to escgpe locd minimum.  Some[5,20]



have atempted Orthogond Lesst Squares. Some have
adopted Newton-Raphson and Levenberg-Marquardt.

In this paper, conjugate gradient learning dgorithm and

multiple linear regresson weight initidization are
attempted. In next section, conjugate gradient learning

agorithm isintroduced. Section 3 mentions multiple linear
regresson weight initidization. The descriptions and the
results of experiments on the performance of both learning
agorithms and both weight initidizations are reported in
sction 4. Fndly, concluson is drawn and further
research is discussed in section 5.

2. Conjugate Gradient
Learning Algorithm

The training phase of a backpropagation network is an

unconstrained nonlinear optimization problem. The god of

the training is to search an optima st of connection

weightsin the manner that the errors of the network output
can be minimized.

Besdes popular steepest descent dgorithm, conjugate
gradient dgorithm is another search method that can be
used to minimize network output error in conjugate
directions. Conjugate gradient method uses orthogond and
linearly independent non-zero vectors, Two vectors d,

and d; aremutualy G -conjugateif

d/Gd, =0 for it j @
The dgorithm was firdly developed to minimize a
quadratic function of n varigbles

f(w) =c- bTW+%WTGW @

where W isavector withn dementsand G isan ™ n
symmetric and positive definite matrix.  The dgorithm was
then extended to minimization of generd norHinear
functions by interpreting (2) as a second order Taylor
saries expangion of the objective function. Gin (2) is
regarded as Hessian matrix of function f.

A darting point W, issdected first. Thefirst search
direction d, isset to negative gradient g, (i.e
d,;=0,). Conjugate gradient method is to minimize
differentidble function (2) by generating a sequence of
approximation W, ., iteratively according to
Wiy =W, +a,d, (€)
Oy = - G b, 0, @
a and b aremomentum terms to avoid oscillations.

Let =
1+ b,

. Equation (4) can be rewritten as.

s = (- g ) +(1-mid, ] ©

The search direction can be viewed as a convex combination
of the current steepest descent direction and the direction
used inthelagt move.

The search distance of each direction is varied. The vaue
of a, canbedetermined by line search techniques, such as
Golden Search and Brent’s Algorithm, in the way that
f(w,+a,d, ) is mnimized dong the direction d,,
givenfixed W, andfixed d, .

b, canbecaculated by the following three formulae:
Hestenes and Stiefd’ s formula,

= gITﬂ[ Okt -~ Okl ®)
dk [ O+~ Ok ]
Polak and Ribiere sformula,
bk — gl—+1[ g$+1 B gk] (7)
Ok 9k
Fetcher and Reeves formula,
9cad
bk - k+.-r1 k+1 (8)
Ok Gk

Shanno's inexact line search[15] considers the conjugate
method as a memoryless quasi-Newton method. Shanno
derivesaformulafor computing d,,, :
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where pk :akdk and yk = gk+1' gk' (9)
The method performs an gpproximate line minimization in
adescent direction in order to increase numerical stability.

Y

For n-dimensond quadretic problems, the solution is
converged from W, to w by n step moves dong
directions  d,,d,,....d,,.

However, for non-quadratic problems, G -conjugacy of the
direction vectors deteriorates. Therefore, the direction
vector is reinitidized to the negative gradient of the current
point after every n steps. That is,

d, =-0, wheek=m+1,

different G -conjugate

ml N (10

Conjugate gradient method has a second-order convergence
property without complex calculation of the Hessian
matrix. A faster convergence is expected than first order
steepest descent approach.  Conjugate-gradient gpproach
finds the optimal weight vector w aong the current gradient
by doing aline-search. It computes the gradient &t the new
point and projects it onto the subspace defined by the
complement of the gpace defined by dl previoudy chosen
gradients. The new direction is orthogond to dl previous



search directions. The method is smple. No parameter is
involved. It requires little storage space and expected to be
efficient.

The summary of conjugete gradient dgorithm is describe
below:
Sak=1 Initidizew,.
Compute g; = Nf(w,).
Setd; =-g;.
Compute a | by line search,
wherea, =argmin [ f(w, +a,d,)] -
Update weight vector by Wi = w+a dy.
If network error is less than a pre-set minimum vaue
or the maximum number of iterations has been
reeched, stop; elsegoto step 7.
7. Ifk+1>n,thenw;=w,,, k =1landgotostep 2;
Elsead) sstk= k+1

b) compute gy.1 = th(Wk+l)-

c) compute 4, .

d) compute new direction: dy.1=-g+1+dx.

€ gotostep4
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To compute gradient in step 2 and 7b, the objective
function is first defined. The am is to minimize the
network error that is dependent of the independent
connection weights.  The objective function is defined by
the error function:

1 o o 2
fw) =& &, v, (W) @

where N isthe number of patternsin the training s=t;
w is onedimensond weght vector in which
weights are ordered by layer and then by neuron;
t, ad y,(w) ae the atud and desired

outputs of the j-th output neuron for n-th pattern,
respectively.

With the argumentsin [34], the gradient is

o(w) =78 6, ¥, (w) @
For output nodes,

dy =-(t,;- y,(w))s,(net,) (13
where éj (net,; ) isthederivative of the activation

function of theinput of the j-th neuron netnj .

For the hidden node,
d, =s,(net, )ak_ d, W, (14)

where Wi, isthe weight from j-th to the k-th neuron.

3. Multiple Linear Regression
Weight Initialization

Backpropagation is a hill-dlimbing technique. It runs the
risk of being trapped in locd optimum  The starting point
of the connection weights becomes an important issue to
reduce the possibility of being trapped in loca optimum.
Random weight initidization does not guarantee to generate
agood gtarting point. It can be enhanced by multiple linear
regression.  In this method, weights between input layer
and hidden layer are ill initidized randomly but weights
between hidden layer and output layer is obtained by
multiple linear regresson.

The weight W, J. between the input node i and the hidden
nodej isinitiadized by uniform randomization. Once input
X° of sample s has been fed into the input node and W;'s
have been assigned vaues, output vaue st of the hidden
nodej can be caculated as

s — 2 s

j—f(aWini)’ 15
where f is a transfer function. The output vdue of the
output node can be cdculated as

y'=f(@Vv,R) (16)
i

where \7 is the weight between the hidden layer and the
output layer.

Assume sigmoid function f (x) = 1 . is used as the

1+e
transfer function of the network. By Taylor’'s expansion,
1 X
f(x +Z 17
(x) @E 2

Applying the linear gpproximation in (17) to (16), we have
the following approximated linear relationship between the
outputy andv;'s:

1 1.8
S=Z+-(qV.R® (18)
v =2 4({;]1 R

or4y®-2=vR°P+V,R>+..+V R}
s=12.N (19
where misthe number of hidden nodes;
N isthe tota number of training samples.

The st of equaionsin (19) is a typical multiple linear
regression modd. st 's are conddered as the regressors.

V; 's canbe estimated by standard regression method.

Once v, ’s have been obtained, the network initidization is
completed and the training Starts.
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4. Experiment

The daily trading data of deven ligting companies in 1994-
1996 was collected from Shangha Stock Exchange for
technica andysis of stock price. The first 500 entries were
usd astraining data. The rest 150 were testing data. The
raw datais preprocessed into various technicd indicatorsto
gain insght into the direction that the stock market may be
going Ten technica indicators was selected as inputs of
the neura network: the lagging input of past 5 days change
in exponentia moving average (QEMA(t-1), BEMA(t-1),
QEMA(t-1), DEMA(t-1), DBEMA(t-1)), rdaive
drength index on day t-1 (RSI(t-1)), moving average
convagencedivegence on day t-1 (MACD(t-1)),
MACD Sgd Line on day t-1 (MACD Signal
Line (t-1)), stochastic %K o day t-1 (%K(t-1)) and
stochastic %D on day t-1 (%D(t-1)).

EMA is atrend-following tool that gives an average vaue
of datawith grester weight to the latest data.  Difference of
EMA can be consdered asmomentum. RS is an oscillator
which measures the strength of up versus down over a
cetan time interva (nine days were sdected in our
experiment). High vaue of RS indicates a strong market
and low vaue indicates wesk markets. MACD, a trend-
fallowing momentum indicator, is the difference between
two moving average of price. In our experiment, 12-day
EMA and 26-day EMA were used. MACD sgnd line
smoothes MACD. 9-day EMA of MACD was selected
for the calculaion of MACD sgnd line. Sochadtic is an
oscillator that tracks the relationship of each closing price
to the recent high-low range. It hastwo lines: %K and %D.
%K is the “raw” Stochadtic. In our experiment, the
Stochadtic' s time window was et to five for caculation of
%K. %D smoothes %K — over a 3-day period in our
experiment.

Neurd network cannot handle wide range of vaues. In
order to avaid difficulty in getting network outputs very
close to the two endpoints, the indicators were normalized
to the range [0.05, 0.95], instead of [0,1], before being input
to the network.
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Fig 1la Predicted DEMA(t) vsactua DEMA(t)

Prediction of price change dlows a larger eror tolerance
then prediction of exact price vaue, resulting in aggnificant
improvement in the forecasting ability[8,10]. In order to
smooth out the noise and the random component of datg
exponentid moving average of the dosing price change a
day t (DEMA(t)) was selected as the output node of the
network. DEMA(t) can then be transformed to stock
closing price P by

P = P;_1+%[ DEMA(t)- DEMA(t- 1)] + DEMA(t - 1)

A three-layer network architecture was used. The required
number of hidden nodes is estimated by

No. of hidden nodes=(M +N)/2
where M and N is the number of input nodes and output
nodes respectively. In our network, there were ten input
nodes and one output node. Hence, five hidden nodes were
used.

The following scenarios have been examined:

a Conjugate gradient with random initidization (CG/RI)

b. Conjugate gradient with multiple linear regression
initidization (CG/MLRI)

¢ Steepest descent with random initidization (SD/RI)

d. Steepest descent  with multiple linear regresson
initidization (SD/MLRI)

In seepest descent dgorithm, the learning rate and

momentum rate was set to 0.1 and 0.5 respectively[27]. In

conjugate gradient, Golden Search was used to perform the

exact the line serch of a. According to Bazards

andysq 3], Polak and Ribiere' sform was selected for the

cdculation of b For dl scenarios mentioned above, the

training is terminated when mean square error MSE) is

gmdler than 0.5%.

All the deven company data were used for each of the
above scenario.  Each company data set ren 10 times.
Figure 1 shows a sample result from testing phase.

. HNetwark Test Result

Mean Squared ErrarfMSE) = | 1.149756E-01 | Perioimarce:
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Fig 1b: Predicted stock price vs actudl stock price

Figurel: A sampleresult from neural network




In figure 1a dthough predicted DEMA(t) and actud
DEMA(t) have a relative great devidtion in some regions,
the network can ill mode the actua EMA reasonably
wel. On the other hand, &fter the transformation of
DEMA(t) to exact price vaue, the deviation between actud
price and predicted priceis small. Two curves in figure 1b
nearly coincide. This reflects the selection of the network
forecaster was appropriete.

The performance of scenarios mentioned above is evauated
by average number of iterations required for training,
averape M SE integting phase and the percentage of correct
direction prediction in testing phase. The results are
summarized in Teble 1.

Average Avarage % of correct
number of MSE direction

iterations prediction
CG/RI 56.636 0.001753 73.055
CG/MLRI 30.273 0.001768 73545
SD/RI 497.818 0.001797 72.564
SD /MLRI 729.367 0.002580 69.303

Table 1: Perfor mance evaluation for four scenarios

All scenarios, except for steepest descent with MLR
initidization, achieve smilar average MSE and percentage
of correct direction prediction. All scenarios perform
satisfactory. The mean square error produced is on average
below 0.258% and more than 69% correct direction
prediction is reached.

Conjugete gradient learning on average reguires sgnificant
less number of iterations than steepest descent learning.
Due to complexity of line search, conjugae gradient
requires a longer computation time than steepest gradient
per iteration. However, overdl convergence of conjugae
gradient neura network is till faster than stegpest descent
network.

In conjugate gradient network, MLR initidization requires
less number of iterations required for training than random
initidization, achieving dmilar MSE and direction
prediction accurecy with random initidization.  The
positive result shows that regresson provides a better
garting point for the local quadratic approximation of the
nonlinear network function performed by conjugate
gradient.

However, in deepest descent network, regresson
initidization does not improve performance. It requires

more number of iterations for training, produces a larger
MSE and fewer correct direction predictions than random
initidlization. The phenomenon is opposite to the case in
conjugate gradient network. It is éttributed to the
charecteridics of the gradient descent agorithm thet
modifies direction to negetive gradient of eror surfece,
resulting in spoils of good starting point generated by MLP
by subsequent directions.

5. Conclusion & Discussion

The experimenta results show that it is possible to model
stock price based on historical trading data by using athree-
layer neurd network. In generd, toth steepest descent
network and conjugate gradient network produce the same
levd of eror and reach the same levd of direction
prediction accuracy.

Conjugate gradient gpproach has advantages of steepest

descent agpproach. It does not require empiricd

determination of network. As opposed to zigzag motion in

steepest descent approach, its orthogonal search preventsa
good point being spoiled. Theoreticaly, the convergence of

second-order conjugate gradient method is faster than first

order steepest descent approach. This is verified in our

experimen.

In regard to initid starting point, the experimenta results
show the good starting point generated by multiple linear
regresson weight initidization is spoiled by subsequent
direction in steepest descent network. On the contrary,
regresson initidization provides a good sarting point,
improvingthe convergence of conjugate gradient learning.

To sum up, the efficiency of backpropagation can be
improved by conjugate gradient learning with multiple
linear regression weight initidization.

It is believed that the computation time of conjugate
gradient can be reduced by Shanno's gpproach[7]. The
initidization scheme may be improved by esimating
weights between input nodes and hidden nodes, instead of
random initidization. Enrichment of more relevant inputs
such as fundamenta data and data from derivative markets
may improve the predictability of the network. Findly,
more sophisticated network architectures can be attempted
for price prediction.
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