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 ARTIFICIAL NEURAL NETWORK MODELS 
 FOR FORECASTING AND DECISION MAKING 
 
 ABSTRACT 
 
Some authors advocate artificial neural networks as a replacement 
for statistical forecasting and decision models; other authors are 
concerned that artificial neural networks might be oversold or 
just a fad.  In this paper we review the literature comparing 
artificial neural networks and statistical models, particularly in 
regression-based forecasting, time series forecasting, and 
decision making.  Our intention is to give a balanced assessment 
of the potential of artificial neural networks for forecasting and 
decision making models. 
 
We survey the literature and summarize several studies we have 
performed.  Overall, the empirical studies find artificial neural 
networks comparable to their statistical counterparts.  We note 
the need for using the many mathematical proofs underlying 
artificial neural networks to determine the best conditions for 
using artificial neural networks in the forecasting and decision 
making.  
 
Key Words: Artificial Neural Networks, Regression, Forecasting, 
Decision Making, Time Series. 
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 ARTIFICIAL NEURAL NETWORK MODELS 
 FOR FORECASTING AND DECISION MAKING 
 INTRODUCTION 
 Over the last few decades, there has been much research 
directed at predicting the future and making better decisions.  
This research has led to many developments in forecasting methods. 
 Most of these methodological advances have been based on 
statistical techniques.  Currently, there is a new challenger for 
these methodologies - artificial neural networks. 
 Artificial neural networks (ANN) have been widely touted as 
solving many forecasting and decision modeling problems (e.g., 
Hiew and Green, 1992).  For example, they are argued to be able to 
model easily any type of parametric or non-parametric process and 
automatically and optimally transform the input data.  These sorts 
of claims have led to much interest in artificial neural networks. 
 On the other hand, Chatfield (1993) has queried whether 
artificial neural networks have been oversold or are just a fad.   
 In this paper, we will attempt to give a balanced review of 
the literature comparing artificial neural networks and 
statistical techniques.  Our review will be segmented into three 
different application areas: time series forecasting, regression-
based forecasting, and regression-based decision models.  
Additionally, we will note the literature comparing artificial 
neural networks and other models such as discriminant analysis.  
But before that review, we will first examine the general claims 
made for artificial neural networks that are relevant to 
forecasting and decision making. 
 
 THE POTENTIAL OF ARTIFICIAL NEURAL NETWORKS 
 Artificial neural networks are mathematical models inspired 
by the organization and functioning of biological neurons.  There 
are numerous artificial neural network variations that are related 
to the nature of the task assigned to the network.  There are also 
numerous variations in how the neuron is modeled.  In some cases, 
these models correspond closely to biological neurons (e.g., Gluck 
and Bower, 1988; Granger et al., 1989) and in other cases the 
models depart from biological functioning in significant ways.  
See the appendix for a more detailed explanation of the artificial 
neural network paradigm. 
 The literature suggests several potential advantages that 
artificial neural networks have over statistical methods.  
Artificial neural networks can be universal function approximators 
for even non-linear functions.  Artificial neural networks can 
also estimate piece-wise approximations of functions.  In the 
following paragraphs we will elaborate these possibilities. 
 Artificial neural networks can be mathematically shown to be 
universal function approximators (Hornik et al., 1989).  This 

 3 

 

 
 



means that artificial neural networks can automatically 
approximate whatever functional form best characterizes the data. 
 While this property gives little value if the functional form is 
simple (e.g., linear), this property allows artificial neural 
networks to extract more signal from complex underlying functional 
forms.  Also artificial neural networks can at least partially 
transform the input data automatically (Connor, 1988; Donaldson, 
Kamstra and Kim, 1993). 
 Artificial neural networks also are inherently non-linear 
(Rumelhart and McClelland, 1986; Wasserman, 1989).  That means not 
only do they estimate non-linear functions well but also they can 
extract any residual non-linear elements from the data after 
linear terms are removed.  De Gooijer and Kumar (1992) recently 
argued the benefits of using non-linear forecasting models. 
 With artificial neural networks using one or more hidden 
layers, the networks can partition the sample space automatically 
and build different functions in different portions of that space. 
 This means that artificial neural networks have a modest 
capability for building piece-wise non-linear models.  The 
artificial neural network model for the exclusive OR function is a 
good example of such a model (Wasserman, 1989, pp. 30-33).  
Collopy and Armstrong (1992) surveyed forecasting experts and 
found that the experts considered it important to select 
extrapolation techniques that identified and treated abrupt 
changes in historical data patterns, suggesting the utility of 
piece-wise models.   
   Some statistical time series methods have inherent 
limitations due to the way in which the models are estimated.  The 
estimation of many kinds of statistical time series models require 
human interaction and evaluation.  The estimation of artificial 
neural networks, however, can be automated (Hoptroff, 1993).  
Also, many statistical models must be re-estimated periodically 
when new data arrive.  Many artificial neural network algorithms 
learn incrementally (Widrow and Sterns, 1985). 
 There are also problems with artificial neural networks.  
First, artificial neural network methodology and modeling 
techniques are rapidly changing, whereas many statistical modeling 
techniques are stable and well developed.  Second, software is 
readily available for statistical techniques but commercial 
artificial neural network software, although of good quality, 
often lags developments in the field.  Third, artificial neural 
network models are harder to interpret and to give physical 
meaning than are many forecasting models.  Fourth, artificial 
neural networks contain more parameters to estimate than do most 
statistical forecasting models; this can result in overfitting 
problems.  Also, artificial neural networks require more computer 
time than statistical models.  These points are elaborated in the 
appendix. 
 Although several classes of forecasting models share some of 
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the advantages discussed earlier in this section, artificial 
neural networks provide all the latter advantages.  In fact if 
needed, artificial neural networks can even nest ARIMA forecasting 
models (e.g., Donaldson, Kamstra, and Kim, 1993).  Thus, the use 
of artificial neural networks for forecasting and decision making 
models is worthy of evaluation. 
 
 
 ARTIFICIAL NEURAL NETWORKS AND TIME SERIES FORECASTING MODELS 
 Artificial neural networks and traditional time series 
techniques have been compared in several studies.  The best of 
these studies have used the data from the well-known "M-
competition" (Makridakis et al., 1982).  Makridakis et al. 
gathered 1001 real time series; this and the soon-to-be described 
studies use a systematic sample of 111 series from the original 
database.  In the original competition, various groups of 
forecasters were given all but the most recent data points in each 
of the series and asked to make forecasts for those most recent 
points.  Each competitor's forecasts were then compared to the 
actual values in the holdout data set.  The results of this 
competition were reported in Makridakis et al. (1982).  Since the 
competition, all 1001 series including the holdout data have been 
made available. 
 Sharda and Patil (1990) used 75 series from a systematic 
sample of 111 series and found that artificial neural network 
models performed as well as the automatic Box-Jenkins (Autobox) 
procedure.  In the 36 deleted series, however, neither the 
artificial neural network nor Autobox models had enough data to 
estimate the models.  Foster et al. (1991) also used the M-
competition data.  They found artificial neural networks to be 
inferior to Holt's, Brown's, and the least squares statistical 
models for yearly data but comparable with quarterly data; they 
did not compare the models on monthly data.  Sharda and Patil 
(1992) and Tang et al. (1991) found that for time series with a 
long memory, artificial neural network models and Box-Jenkins 
models produce comparable results.  However, for time series with 
short memory, Tang et al. (1991) found artificial neural networks 
to be superior to Box-Jenkins. 
 Kang (1991) compared artificial neural networks and Box-
Jenkins (Autobox) on the 50 M-competition series designated by 
Pack and Downing (1983) to be most appropriate for the Box-Jenkins 
technique.  Kang found Autobox to be superior or equivalent to the 
average of eighteen different artificial neural network 
architectures in terms of MAPE (Mean Absolute Percentage Error).  
Kang also compared the eighteen artificial neural network 
architectures and the Autobox model on seven sets of simulated 
time series patterns.  Kang found the MAPE for the average of the 
eighteen artificial neural network architectures only superior 
when trend and seasonal patterns were in the data.  In each case, 
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at least one artificial neural network was better than the Autobox 
model. Thus, architecture is crucial in designing a successful 
forecasting model.  Interestingly, both Kang (1991) and Tang et 
al. (1991) found that artificial neural networks often performed 
better when predicting beyond the first few periods. 
 The above studies are encouraging but are equivocal; thus, we 
(Hill, O'Connor, and Remus, 1993) were inspired to attempt a more 
definitive comparison of artificial neural networks and 
statistical models.  In our analysis we included the models used 
by both Sharda and Patil (1990) and Foster et al. (1991); also we 
included three important time series forecasting models used in 
the M-competition1, one method based on combining the results of 
six forecasting models2, a naive forecasting model (next period's 
forecast is just whatever happened in the prior period), and a 
method based on human judgment (Lawrence et al., 1985).  This 
method performed as well as the best statistical method in the M-
competition (Lawrence et al., 1985) and appears to be the most 
widely used method in business (Dalrymple, 1987).   
 We compared the models across yearly, quarterly, and monthly 
data from a systematic sample of 111 M-competition time series; 
the models also were designed to cover the cases that Sharda and 
Patil (1990) were unable to forecast.  Additionally, we 
standardized many other procedural differences (like artificial 
neural network model structure) among the earlier discussed 
studies.  All the above gave us a sound comparison of statistical 
and artificial neural network time series models.  We found the 
artificial neural networks were significantly better than 

                     
    1The models used included the deseasonalized single exponential 
smoothing, Box-Jenkins, and deseasonalized Holt exponential 
smoothing method.  These were chosen both because they represented 
numerous well-used methods and because they performed relatively 
well in the M-competition described earlier.  All of the above 
models were estimated as part of the M-competition by experts in 
the technique. 
    2There is a large literature in forecasting that suggests that 
the best forecasts can be made by combining the results of several 
forecasting models (e.g., Makridakis and Winkler, 1985); we 
included such a model from the M-competition.  This model is the 
average of the forecasts of six statistical methods 
(deseasonalized single exponential smoothing, deseasonalized 
adaptive response rate exponential smoothing, deseasonalized 
Holt's exponential smoothing, deseasonalized Brown's linear 
exponential smoothing, Holt-Winter's linear and exponential 
smoothing, and Carboni-Longini filter method).  It should be noted 
that Makridakis and Winkler's conclusion that the simple averaging 
is the best way to combine forecasts is not universally supported; 
see Donaldson, Kamstra, and Kim (1993) for a contrasting view of 
this literature. 
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statistical and human judgment methods by about 5% MAPE in the 
quarterly and about 2% MAPE in the monthly time series.   
 Why did our work outperform Sharda and Patil (1990), Foster 
et al. (1991), and Kang (1991)?  Part of the answer is suggested 
when we compare the results on our two architectures. The first 
architecture forecast all periods in the forecast horizon 
simultaneously.  This model is similar to that used by Foster et 
al. (1991), Kang (1991), and Sharda and Patil (1990 and 1992).  In 
all four studies (including ours) this ANN architecture performed 
roughly as well as the statistical models. 
 In the second ANN architecture, a forecast for the first 
period of the forecast horizon was generated.  It was fed back 
into the model to forecast the second period of the forecast 
horizon.  This process was continued until there were forecasts 
for the entire horizon.  This second ANN architecture outperformed 
the first ANN architecture, Sharda and Patil (1990) and Foster et 
al. (1991).  The bootstrapping in the second architecture may have 
been the crucial difference since bootstrapping also improves 
judgmental forecasting models (see Armstrong, 1985, pp. 271-293 
for a good review of this literature).  
 We also compared the second ANN architecture with the 
statistical models across all periods in the forecast horizon; the 
superiority of the second ANN architecture was in the later 
periods of the forecast horizon (confirming the findings of Kang 
(1991) and Tang et al. (1991)).  Both Sharda and Patil (1990) and 
Foster et al. (1991) made comparisons based on a one period ahead 
forecast.  
 Two of the results above deserve additional discussion.  
First, both Kang (1991) and our work found artificial neural 
networks better in forecasting monthly and quarterly series than 
in forecasting annual series.  Second, Kang (1991), Tang et al. 
(1991), and our work found artificial neural networks to be 
superior in the later periods of the forecast horizon.  Since 
artificial neural networks are most advantageous when non-linear 
patterns are present, we favor that explanation for our results.  
In the first case, non-linear patterns could result from the 
relatively more non-linearities in deseasonalized quarterly and 
monthly series than in annual series.  The second result could 
also be explained if the series contained non-linearities.  If so, 
the non-linear artificial neural networks should make better 
forecasts than linear models; the improvement would be 
increasingly apparent as the forecast horizon increased. 
 Overall, the early studies on artificial neural networks are 
equivocal.  In our work, however, we found artificial neural 
networks to perform as well as classical statistical models in 
forecasting annual time series and they may actually perform 
better than statistical models for monthly and quarterly data.  
The case for artificial neural network models may be strengthened 
by other model attributes that are important in a particular 
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application (for example, the artificial neural network's ability 
to automate the forecasting process). 
 
 ARTIFICIAL NEURAL NETWORKS AND REGRESSION-BASED MODELS 
 Regression models are widely used to make forecasts and to 
model human decision tasks.  In this section we will examine the 
comparative studies of artificial neural networks and regression 
models that are independent of the task to be modeled; in the next 
section we will examine comparative studies of artificial neural 
networks and regression models when used to model human decision 
tasks.  Interestingly, there are no studies that compare 
artificial neural networks and regression using real multivariate 
forecasting data. 
Comparative Studies Independent of Task 
 In Marquez et al. (1992) we generated data representing 
common bivariate functional forms used in forecasting (linear, 
log-linear, squared, square-root, and reciprocal).  For each 
functional form, 100 sets of n points (15, 30, or 60) each with 
three noise levels (R2= .30, .60, and .90) were created.  
Artificial neural networks were estimated for each of the above 
data sets.  The fit of the artificial neural networks was compared 
to the fit of the true functional forms using holdout data sets of 
100 points each.  The fit of the artificial neural networks to the 
data was almost as good as the fit of the true functional forms 
(i.e., within 2% of the MAPE).  Also, for all practical purposes 
the artificial neural networks fit the data as well as a correctly 
specified regression model with the appropriate independent 
variable transformation.  In this study artificial neural networks 
performed comparatively well with high noise and low sample sizes. 
  
 This work continued as Marquez (1992) expanded the simulation 
study to other functional forms.  The Marquez et al. (1992) 
results generalized to other functional forms including second 
degree polynomials, forms with multiple independent variables, the 
Michaelis-Menten equation, the exponential rise equation, and the 
logistic model.  The artificial neural networks again were within 
2% of the MAPE of the true functional form; the artificial neural 
networks fit the data about as well as a correctly specified 
regression model with appropriate independent variable 
transformations.  Artificial neural networks were also noted to be 
as vulnerable as regression to outliers. 
 The work in this section shows the comparable performance of 
artificial neural networks and regression.  It also shows that 
artificial neural networks are effective in estimating true 
functional forms; their MAPE is less than 2% of that of the true 
functional form.  This ability to work well when the functional 
form is unknown makes artificial neural networks an attractive 
choice in many applications. 
Comparative Studies for Decision Tasks 
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 A decision model tries to predict a human's judgment based on 
the factors that a person uses to make the judgment.  Generally, 
these models have linear functional forms and regression is used 
to estimate them.  There are several interesting business 
decisions that have been examined using these models. 
 Dutta and Shekhar (1988) used 10 factors to predict the 
ratings of corporate bonds.  They estimated the artificial neural 
network and regression models on 30 randomly selected bonds rated 
in Standard and Poor's and Valueline.  They found that the 
artificial neural networks outperformed the regression models in 
accurately predicting the ratings of 17 randomly selected bonds in 
a holdout sample.  Duliba (1991) compared artificial neural 
network models with four types of regression models in predicting 
the financial performance of a single group of transportation 
companies.  She found that the artificial neural network model 
outperformed the random effects regression model but not the fixed 
effects model for this decision.  
 One of the classic human judgment problems has been modeling 
the graduate school admission decision.  Gorr, Nagin, and 
Szczypula (1993) undertook modeling this decision with artificial 
neural networks, linear regression, stepwise polynomial 
regression, and index used by a graduate admissions committee.  
While they found the artificial neural network to identify model 
structure beyond that of the regression model, the three 
empirically-estimated models performed equally well but none of 
the three models outperformed the graduate admissions committee's 
index. 
 Remus and Hill (1990) compared the production scheduling 
decisions as modeled by artificial neural networks and regression-
based decision rules.  The data used were from 62 decision makers 
who each made 24 decisions (Remus, 1987); thus, artificial neural 
network and regression models were developed and compared for each 
of the 62 decision makers.  The model structure used was the same 
structure used in the comparable regression models.  Artificial 
neural network models performed as well but not better than those 
using the linear regression models.  Both models outperformed the 
actual decision makers.   
 In a second study, Hill and Remus (1993) continued the above 
research and aggregated the data from all 62 decision makers to 
estimate a composite artificial neural network model.  The 
resulting artificial neural network model performed better than 
both the statistical models and artificial neural networks from 
the earlier study.  The performance of the composite artificial 
neural network was not significantly different than the 
performance of the statistical composite models in intermediate 
levels of environmental variability; however, in low levels of 
variance the statistical composite model performed better.     
 Overall, we believe the research shows that artificial neural 
networks can perform as well as but not necessarily better than 
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regression in modeling human decision making.  However, artificial 
neural network models may be particularly valuable if the decision 
contains important non-linear elements or some of the other 
advantages of artificial neural networks are crucial in a given 
application (for example, the artificial neural network's ability 
to automate the process). 
 
 ARTIFICIAL NEURAL NETWORKS AND OTHER MODELS 
 There have been numerous other studies where models (other 
than ordinary least squares regression and time series models) 
have been compared to artificial neural networks in common 
business tasks.  For example, logistic regression is commonly used 
in classification problems where the response variable has a 
binary value.  Bell et al. (1989) compared backpropagation 
networks against logistic regression models in predicting 
commercial bank failures.  The artificial neural network model 
performed well in failure prediction and was a better predictor of 
bank failure than the logistic model. 
 Roy and Cosset (1990) also used artificial neural network and 
logistic regression models in predicting country risk ratings 
using economic and political indicators.  The artificial neural 
network models had lower mean absolute error in their predictions 
of country risk ratings and were more sensitive to changes in risk 
indicators than their logistic counterparts. 
 Artificial neural networks are an alternative to discriminant 
analysis.  Practical problems where the comparison between 
artificial neural networks and discriminant analysis has been 
applied include the prediction of stock price performance (Yoon 
and Swales, 1990), the prediction of company bankruptcy (Odom and 
Sharda, 1990; Raghupathi et al., 1991; Koster et al., 1990), and 
the assignment of ratings to bonds (Surkan and Singleton, 1990).  
In all of these studies, the artificial neural network model 
outperformed discriminant analysis.  The above studies suffer from 
many technical problems; in particular, the number of data sets is 
limited and the data sets are small. 
 Artificial neural networks are also an alternative to 
discriminant analysis in the prediction of bank failures in Texas 
(Tam, 1991; Tam and Kiang, 1992).  In this work care was taken to 
carefully estimate several models (including artificial neural 
networks, discriminant analysis, logistic regression, and ID3) and 
rigorously test them on holdout samples.  The artificial neural 
networks had better predictive accuracy than the other models.  It 
is not clear how well this result generalizes given the uniqueness 
of the problem modeled. 
 Artificial neural networks are also an alternative to 
specialized non-linear models such as those used in finance.  In a 
well performed study, Donaldson, Kamstra, and Kim (1993) used 
stock index data from the London, New York, Tokyo, and Toronto 
exchanges to evaluate the ability of several popular conditional 
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volatility models to account for the fat-tailed and 
heteroskedastic nature of stock returns3; the models used included 
artificial neural networks and specialized finance models such as 
the autoregressive conditioned heteroskedasticity (ARCH).  They 
found that these models were able only to partially remove the 
leptokurtosis and symmetric and asymmetric heteroskedasticity from 
the data.  However, the artificial neural networks did outperform 
the specialized finance models in this task.  Incidentally, this 
is one of the few studies that exploit the strengths of artificial 
neural networks suggested by the formal theory described earlier. 
 In general, the combination of numerous studies which are 
only suggestive because of assorted methodological weaknesses and 
several well conducted studies (Donaldson, Kamstra, and Kim, 1993; 
Tam, 1991; Tam and Kiang, 1992) gives us guarded optimism for 
artificial neural networks as viable alternatives to the many 
specialized models in business. 
 
 SUMMARY 
 In this review, we found artificial neural networks did as 
well as (and occasionally better than) statistical models; 
however, we suspect that there are only certain conditions where 
this is true.  This borderline needs to be defined and honored or 
artificial neural networks could be oversold; already there are 
warnings from Chatfield (1993) that authors such as Hiew and Green 
(1992) are overselling artificial neural networks.   
 The theory discussed in the second section should give us an 
idea of where this borderline is.  The theory should also define 
the needed empirical studies to confirm the borderline.  For 
example, artificial neural networks can be mathematically shown to 
be universal function approximators (Hornik et al., 1989).  The 
theory-based research should identify problem characteristics  
(like functional form and sample size) that predict when 
artificial neural networks will forecast better than statistical 
models.  Similiarly Connor (1988) and Donaldson, Kamstra, and Kim 
(1993) noted the ability of artificial neural networks to at least 
partially automatically transform input variables.  Theory-based 
research should identify with what input variable characteristics 
predict when artificial neural networks will improve model 
estimation.  Artificial neural networks can be piece-wise linear 
models (Wasserman, 1989, pp. 30-33); theory-based research should 
identify when this advantage would give substantially improved 
forecasting performance.  Such theory-based predictions should set 
the agenda for the next round of research.  
 The research suggested above should be of great interest to 

                     
    3  This is an important issue given the problems the 
conditional volatility introduces into the capital asset pricing 
model (CAPM) in finance.  This results from the heteroskedasticity 
and fat-tails associated with the stock price data used in CAPM.   
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the forecasting community since Collopy and Armstrong's (1992) 
experts wanted to select extrapolation techniques that handle non-
linearities and also handle discontinuities.  Theoretically, 
artificial neural networks can do both well.  However, as noted 
earlier well conducted evaluations of these capabilities have not 
yet been made. 
 The artificial neural network community is composed largely 
of information and computer scientists, electrical engineers, 
psychologists, and physicists; the background of this community is 
reflected in the type of research reported.  Much of this research 
is in case study form.  Formal theory-based evaluations of these 
emerging artificial neural network applications in forecasting and 
elsewhere are also needed.   
 Most of the studies reviewed use backpropagation for 
artificial neural network estimation.  Recently, improvements have 
been proposed for the backpropagation algorithm and alternative 
artificial neural network models have been proposed.  These 
improvements and alternatives will also need the same rigorous 
evaluation in managerial tasks such a forecasting and decision 
making. 
 Although we believe the future looks bright for artificial 
neural network applications in forecasting and decision making, it 
is still necessary to rigorously evaluate these applications.  
Given the weaknesses in much of the current research, however, 
rigorous theory-based research needs to be done before these new 
models become an accepted part of our modeling tools. 
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 Appendix 
 An Introduction to Artificial neural Networks 
 
 Artificial neural Networks (ANN) are mathematical, 
algorithmic, software models inspired by biological artificial 
neural networks.  The ANN consists of basic units, termed neurons, 
whose design is suggested by their biological counterparts.  These 
artificial neurons have input paths just as biological neurons 
have dendrites; they have output paths just as biological neurons 
have axons.  Both artificial and biological neurons also have 
predispositions that affect the strength of their output.  The 
neuron combines the inputs, incorporates the effect of the 
predisposition (bias), and outputs signals.  In both real and 
artificial neurons, learning occurs and alters the strength of 
connections between the neurons and the biases.  In the following 
paragraphs, we will detail the structure, mathematics, and 
learning algorithm found in the most common artificial neural 
network. 
 In biological neurons, nature sets the way that the input 
signals on dendrites are processed and the way in which the latter 
is translated into an axon activation.  There are a great variety 
of methods used in nature.  With artificial neurons, the modeler 
sets both.  
 In ANN's, the neuron input path i has a signal on it (Xi) and 
the strength of the path is characterized by a weight (wi).  The 
neuron is modeled as summing the path weight times the input 
signal over all paths and adding the node bias (È).  The output 
(Y) is usually a sigmoid shaped logistic function of the latter 
sum.  Mathematically, the sum is expressed as: 
 sum = Ó wi xi + È 
and it is transformed into the output Y with the sigmoid shaped 
logistic function showed mathematically below and depicted in 
Figure 1: 
 Y = 1/(1 + e-sum) 
Note that this S-shaped function reduces the effect of extreme 
input values on the performance of the network.  x 
**************************************************************** 
 Insert Figure 1 About Here 
**************************************************************** 
  Learning occurs through the adjustment of the path weights 
and node biases.  The most common method used for the adjustment 
is backpropagation.  In this method, the weights are adjusted to 
minimize the squared difference between the model output and the 
desired output for an observation in the data set.  The squared 
error is then propagated backward though the network and used to 
adjust the weights and biases.  The error is: 
 E = (1/2) Ó Ó (yj,c - dj,c)

2 
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where c is an index over the data set used to estimate the 
network, j is an index over the output units of the network, y is 
the actual state of the output unit for a given set of inputs, and 
d is the desired state of the output unit for that set of inputs. 
 This adjustment process leads to a gradient descent to a 
minimum point on the error surface like that depicted in Figure 2. 
 This process is not without problems since there is no assurance 
that the minimum is not a local minimum;  this problem and its 
solution is discussed later in this section.   
**************************************************************** 
 Insert Figure 2 About Here 
**************************************************************** 
 The simplest version of the gradient descent is to change 
each weight by an amount proportional to the accumulated error 
associated with that weight; that is, for any given weight: 
 Ä w(t) = -  å ∂E/∂w 
Often an additional term is added to reflect previous adjustments 
made to that weight.  The latter term is called momentum; the 
above equation becomes: 
 Ä w(t) = -  å ∂E/∂w   +  á Ä w(t-1) 
Rumelhart et al. (1986) solve this problem for the sigmoid 
transfer function to get the gradient descent formula used in most 
standard backpropagation software.  Note that å and á must be hand 
selected for the task or alternatively the Rumelhart and 
McClelland (1986) defaults are used. 
 As in nature, many neurons combine to form a artificial 
neural network as is shown in figure 3.  The network consists of 
an input layer, an output layer, and perhaps one or more 
intervening layers; the latter are termed hidden layers.  Each 
layer consists of multiple artificial neurons; these artificial 
neurons are connected to other neurons in adjacent layers.  Since 
these networks contain many interacting non-linear neurons in 
multiple layers, the networks can capture relatively complex 
phenomenon.  The learning occurs in the same way as described 
above for an individual neuron; that is, the error is propagated 
backward and used to adjust the weights and biases in the network 
using the earlier describe algorithm.  The Rumelhart et al. (1986) 
solution to the gradient descent problem accommodates this multi-
layer backpropagation. 
 
**************************************************************** 
 Insert Figure 3 About Here 
**************************************************************** 
 Usually the modeling begins by postulating an initial network 
based on general modeling practices.  One general practice is to 
include as many reasonable predictor variables and dummy variables 
as possible; hence, the size of the input layer is determined by 
the number of these variables.  In the time series models, the 
general practice is to try to capture the seasonality by having as 
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many input variables as there are periods in one seasonal cycle.  
To get more concise models, the number of input variables is often 
reduced; a good way to do this is with the pruning method 
discussed later in the appendix. 
 Only one hidden layer is needed for a artificial neural 
network to be a universal function approximator to a continuous 
function (Hornik et al., 1989) so often only one hidden layer is 
used; however, more than one hidden layer maybe used since overall 
fewer neurons will be required.  If the function to be 
approximated is discontinuous, the model will require at most two 
hidden layers (Cybenko, 1988).   
 The number of nodes in the output layer corresponds to the 
number of variables to be predicted; thus, artificial neural 
networks can simultaneously forecast several variables.  In the 
time series case, the output layer can be structured to 
simultaneous forecast several periods into the future.  However, 
we found in the current study that the best performing artificial 
neural networks for time series use relatively simple networks and 
bootstrap the one period forecasts to forecast additional periods. 
 To begin estimating the network, the weights and biases are 
usually initialized with random values.  The observations are then 
input to the network and parameters adjusted using one of the 
following two methods.  In the first method, an observation is 
presented to the input layer and an output generated.  The 
difference between the network's output and the desired output 
provides the error that is backpropagated to adjust the weights.  
Then the next observation of the data is presented and more 
adjustments made.  In the second method, only after the entire 
data set has been presented is the adjustment made; the adjustment 
is based on the overall fit between the network outputs and the 
desired output values calculated across the entire data set.  
Usually the first method is used to start the gradient descent 
process (since it leads to a fast descent of the error surface) 
and the second is used to close in on the minimum point. 
 The adjustment process is repeated until the error converges 
on a minimum point.  However, it is not quite that simple since 
the error surface may have both local minimums and the global 
minimum.  To avoid the local minimums, a good starting point is 
required; thus, a downhill simplex algorithm may be used to find 
such a starting point.  Also, a downhill simplex algorithm may be 
used to hone in on the global minimum after backpropagation has 
ended.  Marquez (1992) used the methods of Nelder and Mead (1965) 
to accomplish both of the above. 
 In general, artificial neural networks use more parameters 
than their classical counterparts and, thus, are more prone to 
overfitting problems.  There are two general approaches to the 
overfitting problem.  The first and simplest is fit the model 
using only part of the data and to evaluate the model's 
performance on the other part of the data; the latter is usually 
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termed a "holdout sample." 
 The second approach to this problem is to use one of the many 
network pruning algorithms reduce the network size (and hence 
parameters to estimate).  Marquez (1992) used a pruning method 
based on the work of Sietsma and Dow (1991) and Weigend et al. 
(1990).  This technique includes a term based on the number of 
artificial neural network parameters in the error function; when 
the augmented function is minimized, both the error and the number 
of parameters are reduced.  We might note that it is best to use 
both methods as did Marquez (1992). 
 There are three practical problems with artificial neural 
networks that are worthy of elaboration in the following 
paragraphs.  These problems are the difficulty in tracking the 
rapidly changing literature on artificial neural networks, the 
computer intensiveness of these models, and the difficulty in 
interpreting the model structure. 
 Artificial neural network methodology and modeling techniques 
are rapidly changing and improving so researchers must keep 
current in the many artificial neural network journals and 
conference proceedings.  The algorithm improvements are often 
presented in the mathematical dialect of its authors; the dialect 
used can differ widely among the members of the artificial neural 
network community and thus make challenging reading. 
 Commercial software is readily available for statistical 
techniques but commercial artificial neural network software, 
although of good quality, often lags developments such as those 
described above and must be revised periodically.  For example, 
the software we used was locally written, augmented version of 
Rumelhart and McClelland's code (1986). 
 Although convergence on either a local or global minimum is 
guaranteed with backpropagation, convergence may require extensive 
CPU and elapsed time.  This means that models often must be 
developed in batch mode rather than interactive mode.  In our 
work, the model estimation took many hours on a 486 personal 
computer or a SUN SPARC server and, thus, were run overnight.   
 A last point we should make about artificial neural networks 
is that they are much less interpretable that are traditional 
times series and regression models.  As can be inferred from 
figure 1, knowledge of the value of the weights and biases in the 
network gives, at best, a general idea of the functional 
relationships embedded in this complex, non-linear network.  Thus, 
even if a artificial neural network is based on causally related 
data, the resulting model may not give great insight into the 
strength and nature of the relationships. 
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 Figure 1 
 The Sigmoid Transfer Function 
 (Adapted from Wasserman, 1989) 
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 Figure 2 
 Descent Down an Error Surface for Two Weights (W0 and W1) 
 (Adapted from Rumelhart and McClelland, 1986) 
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 Figure 3 
 An Artificial Neural Network 


