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ARTI FI G AL NEURAL NETWORK MODELS
FOR FORECASTI NG AND DECI SI ON MAKI NG

ABSTRACT

Sone authors advocate artificial neural networks as a repl acenent
for statistical forecasting and decision nodels; other authors are
concerned that artificial neural networks mght be oversold or
just a fad. In this paper we review the literature conparing
artificial neural networks and statistical nodels, particularly in
regressi on-based forecasting, time series forecasting, and
deci si on maki ng. Qur intention is to give a bal anced assessnent
of the potential of artificial neural networks for forecasting and
deci si on maki ng nodel s.

W survey the literature and sunmarize several studies we have
performed. Overall, the enpirical studies find artificial neura
networ ks conparable to their statistical counterparts. W note
the need for wusing the many nmathematical proofs underlying
artificial neural networks to determne the best conditions for
using artificial neural networks in the forecasting and decision
maki ng.

Key Words: Artificial Neural Networks, Regression, Forecasting,
Deci si on Making, Tine Series.



ARTI FI C AL NEURAL NETWORK MODELS
FOR FCORECASTI NG AND DECI SI ON MAKI NG
| NTRODUCTI ON

Over the last few decades, there has been nuch research
directed at predicting the future and nmaking better decisions.
This research has |led to many devel opnents in forecasting nethods.

Most of these nethodol ogical advances have been based on
statistical techniques. Currently, there is a new challenger for
t hese net hodol ogies - artificial neural networks.

Artificial neural networks (ANN) have been widely touted as
solving many forecasting and decision nodeling problens (e.g.,
H ew and G een, 1992). For exanple, they are argued to be able to
nodel easily any type of paranetric or non-paranmetric process and
automatically and optimally transformthe input data. These sorts
of clains have led to nuch interest in artificial neural networks.

On the other hand, Chatfield (1993) has queried whether
artificial neural networks have been oversold or are just a fad.

In this paper, we wll attenpt to give a balanced review of
the literature conparing artificial neur al networks  and
statistical techniques. Qur review will be segnented into three
different application areas: tine series forecasting, regression-
based f orecasti ng, and regr essi on- based deci si on nodel s.
Additionally, we wIll note the literature conparing artificial
neural networks and other nodels such as discrimnant analysis
But before that review, we will first examne the general clains

made for artificial neur al networ ks that are relevant to
forecasting and deci si on maki ng.

THE POTENTI AL OF ARTI FI C AL NEURAL NETWORKS

Artificial neural networks are mathematical nodels inspired
by the organization and functioning of biological neurons. There
are nunerous artificial neural network variations that are rel ated
to the nature of the task assigned to the network. There are al so
nunerous variations in how the neuron is nodeled. |In some cases,
t hese nodel s correspond closely to biological neurons (e.g., 4 uck
and Bower, 1988; Guanger et al., 1989) and in other cases the
nodel s depart from biological functioning in significant ways.
See the appendix for a nore detailed explanation of the artificial
neural network paradi gm

The literature suggests several potential advantages that
artificial neur al networks have over statistical nmet hods.
Artificial neural networks can be universal function approxi mators
for even non-linear functions. Artificial neural networks can
also estimate piece-wi se approximations of functions. In the
foll owi ng paragraphs we will elaborate these possibilities.

Artificial neural networks can be mathematically shown to be
uni versal function approximators (Hornik et al., 1989). Thi s



nmeans that artificial neur al networks can automatically
approxi mate whatever functional form best characterizes the data.
Wiile this property gives little value if the functional formis

sinple (e.g., linear), this property allows artificial neural
networks to extract nore signal from conplex underlying functional
forms. Also artificial neural networks can at |east partially

transform the input data automatically (Connor, 1988; Donal dson,
Kanstra and Kim 1993).

Artificial neural networks also are inherently non-Ilinear
(Rurel hart and Mcd el l and, 1986; WAssernan, 1989). That neans not
only do they estimate non-linear functions well but also they can
extract any residual non-linear elenents from the data after
linear terns are renoved. De Gooijer and Kumar (1992) recently
argued the benefits of using non-linear forecasting nodels.

Wth artificial neural networks using one or nore hidden
| ayers, the networks can partition the sanple space automatically
and build different functions in different portions of that space.

This nmeans that artificial neural networks have a nodest
capability for building piece-wise non-linear nodels. The
artificial neural network nodel for the exclusive OR function is a
good exanple of such a nodel (Wasserman, 1989, pp. 30-33).
Collopy and Arnstrong (1992) surveyed forecasting experts and
found that the experts considered it inportant to select
extrapolation techniques that identified and treated abrupt
changes in historical data patterns, suggesting the utility of
pi ece-w se nodel s.

Sone  statistical time series nethods have inherent
[imtations due to the way in which the nodels are estimated. The
estimation of many kinds of statistical tinme series nodels require
human interaction and eval uation. The estimation of artificial
neural networks, however, can be automated (Hoptroff, 1993).
Also, many statistical nodels nust be re-estimated periodically
when new data arrive. Many artificial neural network algorithns
| earn increnentally (Wdrow and Sterns, 1985).

There are also problens with artificial neural networks.

First, artificial neur al network methodology and nodeling
techni ques are rapidly changi ng, whereas many statistical nodeling
techniques are stable and well devel oped. Second, software is

readily available for statistical techniques but comercia
artificial neural network software, although of good quality,

often lags developnents in the field. Third, artificial neura
network nodels are harder to interpret and to give physical
nmeaning than are many forecasting nodels. Fourth, artificial

neural networks contain nore paranmeters to estimate than do nost
statistical forecasting nodels; this can result in overfitting
problens. Also, artificial neural networks require nore conputer
time than statistical nodels. These points are elaborated in the
appendi x.

Al t hough several classes of forecasting nodels share sone of



the advantages discussed earlier in this section, artificial
neural networks provide all the latter advantages. In fact if
needed, artificial neural networks can even nest AR MA forecasting
nodel s (e.g., Donaldson, Kanstra, and Kim 1993). Thus, the use
of artificial neural networks for forecasting and decision mnaking
nodel s is worthy of eval uation.

ARTI FI G AL NEURAL NETWORKS AND Tl ME SERI ES FORECASTI NG MODELS
Artificial neur al networks and traditional time series

techni ques have been conpared in several studies. The best of
these studies have used the data from the well-known "M
conpetition" (Makridakis et al., 1982). Makri dakis et al

gathered 1001 real tine series; this and the soon-to-be described
studies use a systematic sanple of 111 series from the origina
dat abase. In the original conmpetition, various groups of
forecasters were given all but the nost recent data points in each
of the series and asked to nake forecasts for those nost recent
poi nt s. Each conpetitor's forecasts were then conpared to the
actual values in the holdout data set. The results of this
conpetition were reported in Makridakis et al. (1982). Since the
conpetition, all 1001 series including the holdout data have been
made avai |l abl e.

Sharda and Patil (1990) used 75 series from a systematic
sanple of 111 series and found that artificial neural network
nodels performed as well as the automatic Box-Jenkins (Autobox)
pr ocedur e. In the 36 deleted series, however, neither the
artificial neural network nor Autobox nodels had enough data to
estimate the nodels. Foster et al. (1991) also used the M
conpetition data. They found artificial neural networks to be
inferior to Holt's, Brown's, and the |east squares statistical
nodels for yearly data but conparable with quarterly data; they
did not conpare the nodels on nonthly data. Sharda and Patil
(1992) and Tang et al. (1991) found that for tinme series with a
long menory, artificial neural network nodels and Box-Jenkins
nodel s produce conparable results. However, for tine series with
short nenory, Tang et al. (1991) found artificial neural networks
to be superior to Box-Jenkins.

Kang (1991) conpared artificial neural networks and Box-
Jenkins (Autobox) on the 50 Mconpetition series designated by
Pack and Downing (1983) to be nost appropriate for the Box-Jenkins
techni que. Kang found Autobox to be superior or equivalent to the
average  of eighteen different artificial neur al net wor k
architectures in terns of MAPE (Mean Absolute Percentage Error).
Kang also conpared the <eighteen artificial neural net wor k
architectures and the Autobox nodel on seven sets of sinulated
time series patterns. Kang found the MAPE for the average of the
eighteen artificial neural network architectures only superior
when trend and seasonal patterns were in the data. |In each case,



at least one artificial neural network was better than the Autobox
nodel. Thus, architecture is crucial in designing a successful
forecasting nodel. Interestingly, both Kang (1991) and Tang et
al. (1991) found that artificial neural networks often perforned
better when predicting beyond the first few peri ods.

The above studies are encouragi ng but are equivocal; thus, we

(HIl, OConnor, and Renus, 1993) were inspired to attenpt a nore
definitive conparison of artificial neur al networks and
statistical nodels. In our analysis we included the nodels used

by both Sharda and Patil (1990) and Foster et al. (1991); also we
included three inportant time series forecasting nodels used in
the Mconpetition’, one nethod based on conbining the results of
six forecasting nodel s?>, a naive forecasting nodel (next period's
forecast is just whatever happened in the prior period), and a

nmet hod based on human judgrment (Lawence et al., 1985). Thi s
nmet hod perforned as well as the best statistical nmethod in the M
conpetition (Lawence et al., 1985) and appears to be the nost

wi dely used nethod in business (Dalrynple, 1987).

We conpared the nodels across yearly, quarterly, and nonthly
data from a systematic sanple of 111 Mconpetition tinme series;
the nodels also were designed to cover the cases that Sharda and
Pati | (1990) were wunable to forecast. Additionally, we
standardi zed many other procedural differences (like artificial
neural network nodel structure) anong the earlier discussed
studies. Al the above gave us a sound conparison of statistica
and artificial neural network tine series nodels. W found the
artificial neur al networks were significantly better than

'The nodel s used included the deseasonalized single exponenti al
snoot hi ng, Box-Jenkins, and deseasonalized Holt exponenti al
snoot hi ng nethod. These were chosen both because they represented
nunerous wel |l -used nethods and because they perforned relatively
well in the Mconpetition described earlier. Al of the above
nodels were estimated as part of the Mconpetition by experts in
t he techni que.

There is a large literature in forecasting that suggests that
the best forecasts can be nmade by conbining the results of several
forecasting nodels (e.g., Mikridakis and Wnkler, 1985); we
i ncluded such a nodel from the Mconpetition. This nodel is the
aver age of t he forecasts of Si X statisti cal met hods
(deseasonal i zed single exponenti al snoot hi ng, deseasonal i zed
adaptive response rate exponential snoothing, deseasonalized

Holt's exponenti al snoot hi ng, deseasonalized Brown's linear
exponent i al snoot hi ng, Holt-Wnter's linear and exponential
snmoot hi ng, and Carboni -Longini filter nethod). It should be noted

t hat Makridakis and Wnkler's conclusion that the sinple averagi ng
is the best way to conbine forecasts is not universally supported;
see Donal dson, Kanstra, and Kim (1993) for a contrasting view of
this literature.



statistical and human judgnment nethods by about 5% MAPE in the
quarterly and about 2% MAPE in the nonthly tinme series.

Wiy did our work outperform Sharda and Patil (1990), Foster
et al. (1991), and Kang (1991)? Part of the answer is suggested
when we conpare the results on our two architectures. The first
architecture forecast all periods 1in the forecast horizon
simul taneously. This nodel is simlar to that used by Foster et
al. (1991), Kang (1991), and Sharda and Patil (1990 and 1992). In
all four studies (including ours) this ANN architecture perforned
roughly as well as the statistical nodels.

In the second ANN architecture, a forecast for the first

period of the forecast horizon was generated. It was fed back
into the nodel to forecast the second period of the forecast
hori zon. This process was continued until there were forecasts

for the entire horizon. This second ANN architecture outperforned
the first ANN architecture, Sharda and Patil (1990) and Foster et
al. (1991). The bootstrapping in the second architecture nmay have
been the crucial difference since bootstrapping also inproves
judgnmental forecasting nodels (see Arnstrong, 1985, pp. 271-293
for a good review of this literature).

W also conmpared the second ANN architecture wth the
statistical nodels across all periods in the forecast horizon; the
superiority of the second ANN architecture was in the |later
periods of the forecast horizon (confirmng the findings of Kang
(1991) and Tang et al. (1991)). Both Sharda and Patil (1990) and
Foster et al. (1991) nade conparisons based on a one period ahead
f orecast.

Two of the results above deserve additional discussion
First, both Kang (1991) and our work found artificial neural
networks better in forecasting nonthly and quarterly series than

in forecasting annual series. Second, Kang (1991), Tang et al.
(1991), and our work found artificial neural netwirks to be
superior in the later periods of the forecast horizon. Si nce

artificial neural networks are nost advantageous when non-l|inear
patterns are present, we favor that explanation for our results.
In the first case, non-linear patterns could result from the
relatively nore non-linearities in deseasonalized quarterly and

nonthly series than in annual series. The second result could
al so be explained if the series contained non-linearities. |If so,
the non-linear artificial neural networks should nake better
forecasts than |inear nodel s; the inprovenent would be
increasingly apparent as the forecast horizon increased.

Overall, the early studies on artificial neural netwrks are
equi vocal . In our work, however, we found artificial neural

networks to perform as well as classical statistical nodels in
forecasting annual tinme series and they nmay actually perform
better than statistical nodels for nonthly and quarterly data.
The case for artificial neural network nodels may be strengthened
by other nodel attributes that are inportant in a particular



application (for exanple, the artificial neural network's ability
to automate the forecasting process).

ARTI FI G AL NEURAL NETWORKS AND REGRESSI ON- BASED MCDELS
Regression nodels are widely used to nake forecasts and to
nodel human deci sion tasks. In this section we will examne the
conparative studies of artificial neural networks and regression
nodel s that are independent of the task to be nodel ed; in the next

section we wll exam ne conparative studies of artificial neura
networ ks and regression nodels when used to nodel human deci sion
t asks. Interestingly, there are no studies that conpare

artificial neural networks and regression using real multivariate
forecasting data.
Conpar ative Studi es | ndependent of Task

In Marquez et al. (1992) we generated data representing
comon bivariate functional fornms used in forecasting (linear,

| og-linear, squared, square-root, and reciprocal). For each
functional form 100 sets of n points (15, 30, or 60) each wth
three noise levels (R= .30, .60, and .90) were created.

Artificial neural networks were estimated for each of the above
data sets. The fit of the artificial neural networks was conpared
to the fit of the true functional forns using hol dout data sets of
100 points each. The fit of the artificial neural networks to the
data was alnost as good as the fit of the true functional forns
(i.e., within 2% of the MAPE). Also, for all practical purposes
the artificial neural networks fit the data as well as a correctly
specified regression nodel wth the appropriate independent
variable transformation. In this study artificial neural networks
performed conparatively well with high noise and | ow sanpl e si zes.

This work continued as Marquez (1992) expanded the sinul ation
study to other functional forns. The Marquez et al. (1992)
results generalized to other functional fornms including second
degree polynomals, forms with multiple independent variables, the
M chael i s-Menten equation, the exponential rise equation, and the
| ogistic nodel. The artificial neural networks again were wthin
2% of the MAPE of the true functional form the artificial neura
networks fit the data about as well as a correctly specified
regressi on nodel with appropriate i ndependent vari abl e
transformations. Artificial neural networks were also noted to be
as vul nerable as regression to outliers.

The work in this section shows the conparable performance of
artificial neural networks and regression. It also shows that
artificial neural networks are effective in estimating true
functional forms; their MAPE is less than 2% of that of the true
functional form This ability to work well when the functional
form is unknown nakes artificial neural networks an attractive
choice in many applications.

Conparative Studies for Decision Tasks




A decision nodel tries to predict a human's judgnent based on

the factors that a person uses to make the judgnent. Cenerally,
these nodels have linear functional forns and regression is used
to estimte them There are several interesting business

deci sions that have been exam ned using these nodel s.

Dutta and Shekhar (1988) used 10 factors to predict the
rati ngs of corporate bonds. They estimated the artificial neura
network and regression nodels on 30 randomy sel ected bonds rated
in Standard and Poor's and Val ueline. They found that the
artificial neural networks outperforned the regression nodels in
accurately predicting the ratings of 17 randomy selected bonds in
a holdout sanple. Duliba (1991) conmpared artificial neural
network nodels with four types of regression nodels in predicting
the financial performance of a single group of transportation
conpani es. She found that the artificial neural network node
out perforned the random effects regression nodel but not the fixed
effects nodel for this decision.

One of the classic human judgnent problens has been nodeling

the graduate school adm ssion decision. Gorr, Nagin, and
Szczypula (1993) undertook nodeling this decision with artificia
neur al net wor ks, l'i near regressi on, st epw se pol ynom a

regression, and index used by a graduate adm ssions commttee.
Wiile they found the artificial neural network to identify nodel
structure beyond that of the regression nodel, the three
enpirically-estimated nodels perfornmed equally well but none of
the three nodels outperforned the graduate adm ssions commttee's
i ndex.

Remus and H Il (1990) conpared the production scheduling
decisions as nodel ed by artificial neural networks and regression-
based decision rules. The data used were from 62 decision nakers
who each made 24 decisions (Renus, 1987); thus, artificial neura
networ k and regressi on nodel s were devel oped and conpared for each
of the 62 decision nmakers. The nodel structure used was the sane
structure used in the conparable regression nodels. Artificia
neural network nodels perforned as well but not better than those
using the linear regression nodels. Both nodels outperforned the
actual decision makers.

In a second study, H Il and Renus (1993) continued the above
research and aggregated the data from all 62 decision nakers to
estimate a conposite artificial neural network nodel. The
resulting artificial neural network nodel perfornmed better than
both the statistical nodels and artificial neural networks from
the earlier study. The performance of the conposite artificia
neur al network was not significantly different than the
performance of the statistical conposite nodels in internediate

level s of environnental variability; however, in low |evels of
variance the statistical conposite nodel perforned better.
Overall, we believe the research shows that artificial neural

networks can perform as well as but not necessarily better than



regression in nodeling human deci sion nmaki ng. However, artificial
neural network nodels may be particularly valuable if the decision
contains inportant non-linear elenments or sone of the other
advantages of artificial neural networks are crucial in a given
application (for exanple, the artificial neural network's ability
to automate the process).

ARTI FI G AL NEURAL NETWORKS AND OTHER MODELS

There have been nunerous other studies where nodels (other
than ordinary |east squares regression and tine series nodels)
have been conpared to artificial neural networks in conmon
busi ness tasks. For exanple, logistic regression is comonly used
in classification problens where the response variable has a
bi nary val ue. Bell et al. (1989) conpared backpropagation
networ ks  agai nst logistic regression nodels in predicting
commercial bank failures. The artificial neural network nodel
performed well in failure prediction and was a better predictor of
bank failure than the |ogistic nodel

Roy and Cosset (1990) also used artificial neural network and
logistic regression nodels in predicting country risk ratings
using economc and political indicators. The artificial neura
network nodels had | ower nean absolute error in their predictions
of country risk ratings and were nore sensitive to changes in risk
indicators than their |ogistic counterparts.

Artificial neural networks are an alternative to discrim nant
anal ysi s. Practical problens where +the conparison between
artificial neural networks and discrimnant analysis has been
applied include the prediction of stock price performance (Yoon
and Swal es, 1990), the prediction of conpany bankruptcy (COdom and
Sharda, 1990; Raghupathi et al., 1991; Koster et al., 1990), and
the assignment of ratings to bonds (Surkan and Singleton, 1990).
In all of these studies, the artificial neural network nodel
out perforned discrimnant analysis. The above studies suffer from
many technical problens; in particular, the nunber of data sets is
[imted and the data sets are smal |

Artificial neural networks are also an alternative to
discrimnant analysis in the prediction of bank failures in Texas
(Tam 1991; Tam and Kiang, 1992). 1In this work care was taken to
carefully estimate several nodels (including artificial neural
networ ks, discrimnant analysis, logistic regression, and ID3) and
rigorously test them on hol dout sanples. The artificial neura
networ ks had better predictive accuracy than the other nodels. It
is not clear how well this result generalizes given the uni queness
of the probl em nodel ed.

Artificial neural networks are also an alternative to
speci ali zed non-linear nodels such as those used in finance. 1In a
wel |l perfornmed study, Donaldson, Kanstra, and Kim (1993) used
stock index data from the London, New York, Tokyo, and Toronto
exchanges to evaluate the ability of several popular conditiona
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volatility nodel s to account for t he fat-tail ed and
het eroskedastic nature of stock returns®, the nodels used included
artificial neural networks and specialized finance nodels such as
the autoregressive conditioned heteroskedasticity (ARCH). They
found that these nodels were able only to partially renove the
| eptokurtosis and symetric and asymmetri c heteroskedasticity from
the data. However, the artificial neural networks did outperform
the specialized finance nodels in this task. Incidentally, this
is one of the few studies that exploit the strengths of artificial
neural networks suggested by the formal theory described earlier.

In general, the conbination of nunmerous studies which are
only suggestive because of assorted nethodol ogi cal weaknesses and
several well conducted studies (Donal dson, Kanstra, and Kim 1993;
Tam 1991; Tam and Kiang, 1992) gives us guarded optimsm for
artificial neural networks as viable alternatives to the many
speci al i zed nodel s i n business.

SUVWWVARY
In this review, we found artificial neural networks did as
well as (and occasionally better than) statistical nodels;

however, we suspect that there are only certain conditions where
this is true. This borderline needs to be defined and honored or
artificial neural networks could be oversold; already there are
warnings from Chatfield (1993) that authors such as H ew and G een
(1992) are overselling artificial neural networks.

The theory discussed in the second section should give us an
idea of where this borderline is. The theory should also define

the needed enpirical studies to confirm the borderline. For
exanple, artificial neural networks can be mathematically shown to
be wuniversal function approximators (Hornik et al., 1989). The

t heory-based research should identify problem characteristics
(like functional form and sanple size) that predict when
artificial neural networks will forecast better than statistica

nodels. Simliarly Connor (1988) and Donal dson, Kanstra, and Kim
(1993) noted the ability of artificial neural networks to at | east

partially automatically transform input variables. Theory- based
research should identify with what input variable characteristics
predict when artificial neural networks wll inprove node

estimation. Artificial neural networks can be piece-wi se |inear
nodel s (Wasserman, 1989, pp. 30-33); theory-based research should
identify when this advantage would give substantially inproved
forecasting performance. Such theory-based predictions should set
t he agenda for the next round of research.

The research suggested above should be of great interest to

: This is an inportant issue given the problens the
conditional volatility introduces into the capital asset pricing
nodel (CAPM in finance. This results fromthe heteroskedasticity
and fat-tails associated with the stock price data used in CAPM

11



the forecasting comunity since Collopy and Arnstrong's (1992)
experts wanted to sel ect extrapol ation techni ques that handl e non-
linearities and also handle discontinuities. Theoretically,
artificial neural networks can do both well. However, as noted
earlier well conducted evaluations of these capabilities have not
yet been nade.

The artificial neural network community is conposed |argely
of information and conputer scientists, electrical engineers,
psychol ogi sts, and physicists; the background of this community is
reflected in the type of research reported. Mich of this research
is in case study form Formal theory-based eval uations of these
enmerging artificial neural network applications in forecasting and
el sewhere are al so needed.

Mbst of the studies reviewed wuse backpropagation for
artificial neural network estimation. Recently, inprovenents have
been proposed for the backpropagation algorithm and alternative
artificial neural network nodels have been proposed. These
i mprovenents and alternatives will also need the same rigorous
evaluation in managerial tasks such a forecasting and decision
maki ng.

Al though we believe the future |ooks bright for artificial
neural network applications in forecasting and decision naking, it
is still necessary to rigorously evaluate these applications.
G ven the weaknesses in nuch of the current research, however,
ri gorous theory-based research needs to be done before these new
nodel s becone an accepted part of our nodeling tools.

12



Appendi x
An Introduction to Artificial neural Networks

Artificial neur al Net wor ks (ANN) are mat hemat i cal
algorithmc, software nodels inspired by biological artificial
neural networks. The ANN consists of basic units, terned neurons,
whose design is suggested by their biological counterparts. These
artificial neurons have input paths just as biological neurons
have dendrites; they have output paths just as biol ogical neurons

have axons. Both artificial and biological neurons also have
predi spositions that affect the strength of their output. The
neuron conbines the inputs, incorporates the effect of the
predi sposition (bias), and outputs signals. In both real and
artificial neurons, learning occurs and alters the strength of
connections between the neurons and the biases. In the follow ng
paragraphs, we wll detail the structure, mathematics, and

learning algorithm found in the nost common artificial neural
net wor k.

In biological neurons, nature sets the way that the input
signals on dendrites are processed and the way in which the latter
is translated into an axon activation. There are a great variety
of nmethods used in nature. Wth artificial neurons, the nodeler
sets both.

In ANN s, the neuron input path i has a signal on it (X) and
the strength of the path is characterized by a weight (w). The
neuron is nodeled as sunmng the path weight tines the input
signal over all paths and adding the node bias (E). The out put
(Y) is usually a signoid shaped logistic function of the latter
sum W©Mathematically, the sumis expressed as:

sum= 0 W X, + E
and it is transfornmed into the output Y with the signoid shaped
logistic function showed mathematically below and depicted in
Fi gure 1:

Y =1/(1 + e
Note that this S-shaped function reduces the effect of extrene
i nput val ues on the performance of the network. x

khkkhkhkhkkhkhhkkhkhhkkhkhhkhkhkhhkhhkhkhkhhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkhkhhkhkikkhkikhkhkikkkikkkikkkk*

Insert Figure 1 About Here
kkhkkhhkkhkkhhkhkkhhhkhhhkhkhhkhkhhhkhkhhkhkhhkhkhdhhkhdhhkhkhhhkhhhkhd ki) dhhkhkd ki) dhkhkikkhhkkhkkhkkik*k
Learning occurs through the adjustnment of the path weights
and node biases. The nost comon nethod used for the adjustnent

i s backpropagati on. In this method, the weights are adjusted to
m nimze the squared difference between the nodel output and the
desired output for an observation in the data set. The squared

error is then propagated backward though the network and used to
adj ust the weights and biasesé The error is:
E = (1/2) O o (yj,c - dj,c)

13



where ¢ is an index over the data set used to estinmate the
network, j is an index over the output units of the network, y is
the actual state of the output unit for a given set of inputs, and
dis the desired state of the output unit for that set of inputs.
This adjustnent process leads to a gradient descent to a
m ni mum point on the error surface like that depicted in Figure 2.
This process is not w thout problens since there is no assurance
that the mnimum is not a local mninmm this problem and its
solution is discussed later in this section.
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Insert Figure 2 About Here
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The sinplest version of the gradient descent is to change
each weight by an anount proportional to the accunulated error
associ ated with that weight; that is, for any given weight:

AwWt) =- & gHw
Oten an additional termis added to reflect previous adjustnents
made to that weight. The latter term is called nonentum the
above equati on becones:

AWt) =- agHaw + a A wt-1)

Runel hart et al. (1986) solve this problem for the signoid
transfer function to get the gradient descent fornmula used in nost
standard backpropagati on software. Note that § and & nust be hand
selected for the task or alternatively the Runelhart and
Mcd el l and (1986) defaults are used.

As in nature, many neurons conbine to form a artificial
neural network as is shown in figure 3. The network consists of
an input layer, an output Ilayer, and perhaps one or nore
intervening layers; the latter are ternmed hidden |[ayers. Each
| ayer consists of nultiple artificial neurons; these artificial
neurons are connected to other neurons in adjacent |ayers. Since
these networks contain many interacting non-linear neurons in
multiple layers, the networks can capture relatively conplex
phenomenon. The learning occurs in the sane way as described
above for an individual neuron; that is, the error is propagated
backward and used to adjust the weights and biases in the network
using the earlier describe algorithm The Runel hart et al. (1986)
solution to the gradient descent problem accommodates this multi-
| ayer backpropagati on.
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Insert Figure 3 About Here
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Usual | y the nodeling begins by postulating an initial network
based on general nodeling practices. One general practice is to
i nclude as many reasonabl e predictor variables and dunmy vari abl es
as possible; hence, the size of the input layer is determ ned by
the nunber of these variables. In the tinme series nodels, the
general practice is to try to capture the seasonality by having as
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many input variables as there are periods in one seasonal cycle.
To get nore conci se nodels, the nunber of input variables is often
reduced; a good way to do this is wth the pruning nethod
di scussed later in the appendi x.

Only one hidden layer is needed for a artificial neural
network to be a universal function approximator to a continuous
function (Hornik et al., 1989) so often only one hidden |layer is
used; however, nore than one hidden | ayer maybe used since overall
fewer neurons wll be required. If the function to be
approximated is discontinuous, the nodel will require at nost two
hi dden | ayers (Cybenko, 1988).

The nunber of nodes in the output |ayer corresponds to the
nunber of variables to be predicted; thus, artificial neural
networ ks can sinmultaneously forecast several variables. In the
time series case, the output layer can be structured to
si mul t aneous forecast several periods into the future. However ,
we found in the current study that the best performng artificia
neural networks for tine series use relatively sinple networks and
bootstrap the one period forecasts to forecast additional periods.

To begin estimating the network, the weights and biases are
usually initialized with random values. The observations are then
input to the network and parameters adjusted using one of the
following two nethods. In the first nethod, an observation is
presented to the input layer and an output generated. The
difference between the network's output and the desired output
provides the error that is backpropagated to adjust the weights.
Then the next observation of the data is presented and nore
adj ustnents nade. In the second nethod, only after the entire
data set has been presented is the adjustnent nmade; the adjustnent
is based on the overall fit between the network outputs and the
desired output values calculated across the entire data set.
Usually the first nethod is used to start the gradient descent
process (since it leads to a fast descent of the error surface)
and the second is used to close in on the m ni mum poi nt.

The adjustnment process is repeated until the error converges
on a mni mum point. However, it is not quite that sinple since
the error surface may have both local mninmuns and the global
m ni mum To avoid the local mninuns, a good starting point is
required; thus, a downhill sinplex algorithm may be used to find
such a starting point. Also, a downhill sinplex algorithm may be
used to hone in on the global mninmum after backpropagati on has
ended. Marquez (1992) used the nethods of Nelder and Mead (1965)
to acconplish both of the above.

In general, artificial neural networks use nore paraneters
than their classical counterparts and, thus, are nore prone to
overfitting problens. There are two general approaches to the
overfitting problem The first and sinplest is fit the nodel
using only part of the data and to evaluate the nodel's
performance on the other part of the data; the latter is usually
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termed a "hol dout sanple.”
The second approach to this problemis to use one of the many
network pruning algorithnms reduce the network size (and hence

paraneters to estinmate). Marquez (1992) wused a pruning nethod
based on the work of Sietsma and Dow (1991) and Wigend et al.
(1990). This technique includes a term based on the nunber of

artificial neural network paraneters in the error function; when
t he augnented function is mnimzed, both the error and the nunber
of paraneters are reduced. W mght note that it is best to use
both nmethods as did Marquez (1992).

There are three practical problenms with artificial neural
networks that are worthy of elaboration in +the follow ng
par agr aphs. These problens are the difficulty in tracking the
rapidly changing literature on artificial neural networks, the
conputer intensiveness of these nodels, and the difficulty in
interpreting the nodel structure.

Artificial neural network methodol ogy and nodel i ng techni ques
are rapidly changing and inmproving so researchers nust keep
current in the wmany artificial neural network journals and
conference proceedi ngs. The algorithm inprovenents are often
presented in the mathematical dialect of its authors; the dialect
used can differ wdely anong the nenbers of the artificial neura
network comunity and thus make chal | engi ng readi ng.

Commercial software is readily available for statistica
techniques but commercial artificial neural network software,
al though of good quality, often |ags devel opnments such as those
descri bed above and nust be revised periodically. For exanpl e
the software we used was locally witten, augnented version of
Runel hart and McC el l and's code (1986).

Al t hough convergence on either a local or global mninmmis
guaranteed w th backpropagati on, convergence nay require extensive
CPU and el apsed tinmne. This neans that nodels often nust be
devel oped in batch node rather than interactive node. In our
work, the nodel estimation took many hours on a 486 personal
conputer or a SUN SPARC server and, thus, were run overnight.

A last point we should nake about artificial neural networks
is that they are nmuch less interpretable that are traditional

times series and regression nodels. As can be inferred from
figure 1, know edge of the value of the weights and biases in the
network gives, at best, a general idea of the functiona

rel ati onshi ps enbedded in this conplex, non-linear network. Thus,
even if a artificial neural network is based on causally rel ated
data, the resulting nodel may not give great insight into the
strength and nature of the rel ationshi ps.
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Figure 1
The Signoid Transfer Function
(Adapt ed from Wasserman, 1989)
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Figure 2
Descent Down an Error Surface for Two Wights (W and W)
(Adapted from Runel hart and Mcd el | and, 1986)
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Figure 3
An Artificial Neural Network
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