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Trading decision models are often designed by optimizing standard statistical measures 
of error to create forecasts from which trading rules are then indirectly synthesized.  In 
the context of a bond futures trading model, we find that by directly optimizing a 
number of profit related objective functions, superior results are attained than when 
using mean square error. Moreover, by using a genetic training method we gain 
flexibility with regards to the choice of objective function by dispensing with the need 
to operate within a gradient based framework.  

 
 
 
1     Introduction 
 
Although much has been written recently on the use of neural networks and computational 
learning techniques in financial forecasting and the design of trading systems,  the majority of 
this research has concentrated on minimizing standard statistical measures of predictability 
rather than directly optimizing a profit related objective function – for recent examples see 
Refenes et al.(1993). This is not altogether surprising as many of these advanced techniques 
have their foundation in other fields where minimizing error functions such as mean square 
error (MSE) is more meaningful to the task at hand.  However, in financial forecasting 
practitioners are more interested in real trading profits and the risk associated with attaining 
those profits than they are in ‘inferred’ profitability derived from intermediate measures of 
predictive accuracy, whose relationship to trading returns is somewhat tenuous.   
 
The observation that statistical error measures may be unsuitable is not new; Leitch (1991) 
finds that, in the context of treasury bill forecasts, predictive accuracy as measured by MSE is 
not strongly related to returns. A study by Caldwell (1995) shows that lower measures of 
MSE and Mean Absolute Error(MAE) did not correlate well with trading profits and in some 
cases were positively correlated (lower error resulted in lower returns and vice versa). 
LeBaron (1993) also finds evidence of a weak connection between MSE measures and trading 
profits. When minimizing traditional error measures such as MSE more emphasis is placed on  
reducing an error where the network predicts a positive move of +3%, compared to an actual 
move of +1%, than in reducing the error in a predicted move of –0.5% for the same actual 
move. However, from a trading perspective, the latter error is least desirable especially if the 
decision is to sell when the predicted move is negative. This is one reason why metrics based 
on direction may be more closely correlated to actual returns. Using some kind of threshold 
on the network output may help to alleviate the problem but it is probably more efficient to 
optimize the desired trading rule more directly. 

 
In this paper we describe a trading model that utilizes neural networks trained with a genetic 
training algorithm to trade the 30 year US Treasury bond futures contract. To address the 
issue of sub-optimal objective functions we directly optimize a number of profit related 
functions, including the well known Sharpe Ratio (Sharpe, 1966), and compare the results 
with a model which minimizes MSE. The main objective was to produce a tradable model 
and so to this end we endeavored to keep all aspects of the model as simple as possible. 

 



Much of the other work on training neural networks with profit related error functions has 
tended to concentrate on modifying the standard gradient descent learning algorithms such as 
backpropagation - usually designed to minimize the MSE between target and output - to 
minimize an objective function more directly related to the trading process. Bentz and 
Refenes(1994) use a technique whereby the backpropagation algorithm is modified so that, 
using a sigmoidal weighting function, more emphasis is placed on observations where there is 
directional error. Choey and Weigend(1996) present a gradient ascent method for directly 
optimizing the Sharpe Ratio as the cost function. Other related work in this area includes that 
of Bengio(1996) and Moody(1996). 

 
Approaching the problem from a gradient based standpoint, requiring modification of the 
gradient descent learning algorithm, is somewhat restrictive as it requires that the function 
which captures the problem’s optimization objective be differentiable. Moreover, this 
procedure can be fairly complex and limits the space of possible objective functions. What is 
arguably more useful is a method that is able to train a neural network on any function of 
interest including those that are not continuous. For example, functions such as, “if network 
output > 0 then long else short” are not easy to accommodate within a gradient based 
framework. This is where stochastic training methods such as those using genetic algorithms 
can be very useful. In the case of the genetic training algorithm all that is required is a 
comparative measure of ‘fitness’, without any need for gradient based information. This 
allows more flexibility in the choice of objective function. 
 
2     Genetic Algorithms 
 
The concept of Genetic Algorithms (GAs) was defined by John Holland (1975). Holland 
showed that a variety of optimization problems could be solved by a method that he called the 
Genetic Algorithm. GAs  are especially useful when the function to be optimized is 
discontinuous or noisy (such as a trading related function) and does not lend itself easily to 
other gradient based approaches. Its effectiveness is partly based on its ability to 
simultaneously search large regions of the  parameter space and converge to regions of high 
fitness (although not necessarily the global optimum).  

 
The technique is based on the principle of Darwinian evolution and the “survival of the 
fittest” and follows this general pattern: 
  
1) First a suitable representation scheme is identified for the problem of interest. In this case 

it is the neural network weight vectors that are encoded in such a way as to represent 
candidate solutions to the problem. 

2)    An initial randomly created population of solution candidates is created. 
3) Each member of the population is assigned a fitness measure depending on the nature of 

the problem. 
4)   A new generation is then created by repeatedly iterating through the following three steps:  

- Reproduce an existing member by copying it directly into the new population. 
- Create two new offspring solutions by performing a crossover operation on two  

parent solutions (parents are selected randomly but biased towards high fitness). 
- Create a new solution from an existing one by random mutation – this particular 

operation is generally constrained to have a low probability of occurrence. 
 
5)   The process is then halted when the population has converged on an acceptable solution.  

 
GAs can be used in a number of ways in ANN design including but not limited to, input 
feature selection, optimization of network architecture, training algorithms etc. In this 
particular application we use GAs  as a training algorithm with all other network parameters 
being decided a priori. 
 



3   Objective Functions 
 
The decision as to which objective function to use is not so clear cut - it is unlikely that a 
single objective function will capture all the features relevant to the trading process. In this 
paper we use four different objective functions: MSE, the Sharpe Ratio (SR), Total log 
returns (TLR) and a variation of TLR which includes a penalty term (TLRP). Although the 
SR is used extensively in the financial community as measure of risk adjusted returns, it is 
generally criticized as it penalizes both negative and positive returns equally. TLR is 
somewhat similar to the SR objective but without the risk adjustment however; its drawback 
is that it does not take into account the total number of trades – a factor that becomes 
increasingly important when transaction costs are taken into account. In the end the choice of 
objective functions was guided by the need for simplicity.  

 
For the MSE, SR and TLR functions the models take on either a Long or Short position 

 in the futures contract and as such are always in the market. The MSE model 
simply minimizes the mean square error between the network output and the target, which in 
this case is one day log returns. After training the following rule is applied: 

{ 1,1 −∈tS }

 
If output 0.0 then long, else short. ≥
 
The TLR model maximizes the following: 
 
Define daily log returns as, 
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The SR model maximizes the Sharpe Ratio defined as, 
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σ
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where  returns, actual =ar

            and returns, freerisk   =fr
             σ = standard deviation of ar . 
 
The SR provides a measure of risk adjusted returns. Actual returns are calculated on a 
monthly basis, averaged and then annualized. We actually remove the risk free returns term as 
it cancels with the interest that is ordinary earned from margin in a trading account. 
The TLRP model can be long, short or neutral { }0 ,1,1 −∈tS . It has a penalty term which 
simply penalizes incorrect daily direction by increasing the resultant daily loss by a certain 
percentage in an attempt to raise overall trading accuracy. 
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Four values for the penalty term, g are chosen: 0.0, 0.1, 0.15 and 0.20. 
 
4     Data 
 
The data used in this study consist of the open, high, low and close of  both the US Tbond and 
S&P500 nearest to expiry futures contracts, covering the period from 12th April 1983 to 30th 
June 1998 - 62 separate contracts in all. As explained later, S&P500 data is used for 
additional inputs to the models. It was necessary to create two adjusted time series from the 
raw prices. For total return calculations in contract points the Bond series is converted into a 
continuous contract series – raw contract prices adjusted to take into account the spread at 
rollover between the nearest contract to expiry and the next contract. This is accomplished by 
establishing the spread between the nearest contract and the next nearest contract at rollover 
and then adding the cumulative spread up to that contract to the new contract prices. 
Contracts are rolled over when the trading volume of the next contract is equal to, or greater 
than, that of the present contract. This splicing creates a new series with the contract rollover 
distortions removed. All exchange holidays are removed from the data. 

 
Where first log differences are required we use the unadjusted raw prices except on the two 
days at rollover, where the appropriate one day overlapping prices of each contract are used to 
calculate the respective log difference of the data (see Eq.1). 
 
Because futures price data are already inherently noisy, adjusting for the spread is essential. 
Without this adjustment a potentially large artificial drop/rise at each rollover can result. In 
the case of the US Bond futures price this spread is mostly negative in the period under study 
due to the financing rate at the time being less than the income or coupon received from the 
underlying bond. Over the period of 1983-1998 the total spread results in a 40 point artificial 
drop in the unadjusted prices. This artificial drop will tend to cause a negative bias in a model 
using only unadjusted prices.  

 
5     The BDS test 
 
Before embarking on the relatively costly and time intensive task of designing a prediction 
model for financial time series it is prudent to ascertain whether or not the data will lend itself 
to such a task. With this in mind we use the test of Brock, Dechert, and Scheinkman (1987), 
the BDS test, as an initial diagnostic of potential predictability within the data series. The 
BDS test is a powerful statistic and tests the null hypothesis that a time series { }tx  is 
independent and identically distributed (iid) against a non-specific alternative.  Let 

 be a time series, and denote { Ttxt ,...,1 , = } ),....,,( 11 −++= MM
tttt xxxX  a point in the -

dimensional Euclidean space. The BDS test develops a statistic based on the correlation 
integral, defined as: 

M



 ∑
<−

=
st

MM

MM
M st XXI

TT
T ),(

)1(
2),( εεC    (5) 

 

where 1+−= MTTM  is the number of -histories constructed from the sample of length M

T , and  is an indicator function defined as, ),( MM
st XXIε

 
εε <−= MMMM

stst XXXXI  if ,1),(      (6) 

                       otherwise ,0 =
and  denotes the sup norm. 
The correlation integral gives us the fraction of all possible pairs of points that are within a 
distance ε  of eachother. 
The test statistic is 

[ ]
),(

),(),(T),(BDS 1
M

T
TCTCT

M

M
MM

εσ
εεε −

=     (7) 

and has a limiting standard normal distribution. Under the null hypothesis that {  is iid, the 

term, 

}tX
[ M

MM TCTCT ),(),( 1 εε −
),( TM

], has a normal limiting distribution with mean zero and 
standard deviation, εσ . The null hypothesis is rejected if the probability of any two M-
histories being close together is greater than the Mth power of the probability of any two 
points being close together. 

 
The test can also serve as a general model specification test by applying the test to the 
residuals of any time series model – a properly specified model should produce iid residuals. 
In order to test for possible nonlinear dependencies it is common practice to remove any 
linear dependence which may be present by filtering or prewhitening the series by fitting a 
linear autoregressive model and then analyzing the residuals to check for structure beyond 
linearity.  In this case we test the log difference series, the residuals of an AR(1) and AR(4) 
model fitted to the series and randomly shuffled versions of all three. 
 
Table 1 shows the results of the BDS statistic for embedding dimensions ranging from 2 to 
5, with 

M

ε  = 1 and 0.5 times the standard deviation for the log first differences of the original 
series, the whitened AR(1) and AR(4) residuals and, for ε =1, the mean of 50 shuffled (with 
replacement) versions of all three series.   
 
Table 1.  
ε M Log Diff AR(1) AR(4) LogDiff shuffled AR(1) Shuffled AR(4) Shuffled
1 2 2.16 2.32 2.33 0.35 0.166 -0.039
1 3 3.79 3.93 3.94 0.17 0.128 -0.096
1 4 4.90 5.07 5.09 0.20 0.179 -0.0165 
1 5 6.15 6.33 6.35 0.24 0.207 -0.193
    
0.5 2 2.04 2.43 2.41 
0.5 3 3.57 3.86 3.87 
0.5 4 4.41 4.71 4.72 
0.5 5 5.36 5.64 5.64 
 
All statistics excluding the shuffled series are significant at the 5% level (>1.96) with the 
majority significant at the 1% level. In the absence of a significant difference between the 
statistics for the raw data and the AR residuals this points to nonlinearities in the underlying 
data generating process of the series. The possible presence of nonlinear dependence suggests 
that linear methods will not be sufficient to model the data adequately. The results for the 



shuffled series show that the underlying structure is destroyed by this process and lends 
further support to the results. 
 
6     Inputs 
 
Given that many of today’s financial markets are interrelated and global in nature it is 
possible that including inputs from related markets may help to improve performance. We 
decided to use both Bond and S&P500 data in the model. There is a 0.3 linear correlation 
between daily log differences of the Bond and S&P500 daily futures data series from 83-98 – 
an indication that certain interrelationships may be exploitable in an effort to improve the 
model.    

 
Choice of inputs is of paramount importance when building financial prediction models. 
Although neural networks have been proven to be powerful function approximators it is still 
necessary to use extensive pre-processing of the input variables – it is unlikely that simply 
presenting inputs derived from price data of the target series at arbitrary lags will produce 
usable results. Theoretical concerns aside, were this the case these ‘anomalies’ would quickly 
be priced out of the market as various participants discovered them. Almost by definition, any 
pre-processed variable which contains  predictive accuracy must be difficult to discover or it 
would no longer exist. In an effort to find meaningful input features we tested a number of the 
popular technical indicators such as, MACD, RSI, Bollinger bands etc. We came to the 
conclusion that many of these more commonly known  technical indicators owe their use to 
the promotional skills of their creators, rather than from proper analysis of their correlation to 
future price changes. In light of this, we ended up in using a number of digital filter design 
techniques from the field of signal processing in an attempt to arrive at more useful and 
robust input features. 
 
Given that the models are based on daily data and will produce an output at the close of each 
day, we focused our attention on inputs that showed correlation with future daily prices. We 
reasoned that if it was possible to find inputs with stable correlation to 1 and 2 day future 
returns it should help to circumvent the problem of the model being biased to either trending 
or sideways markets – a common problem in many conventional trading models. Various 
statistical measures were used including parametric and non-parametric correlation, mutual 
information and a technique using ANOVA, similar to that proposed by Burgess and Refenes 
(1995). The main criteria being that any correlation exhibited by a potential input candidate 
had to be as constant as possible over the full length of the training set. 
 
In all, 5 inputs were formed from 3 separate price transformations. Price transformations 
derived from the S&P500 futures contract consisted of a momentum type indicator at time , 
along with lags at 

t
20−t  and t . The two inputs from the bond series consisted of another 

momentum type indictor at time , together with an input that measured the predictive 
correlation of this input with future prices (lagged appropriately). All inputs were 
standardized to zero mean and unit variance. In order to lessen the effect of outliers the inputs 
were then put through the tanh function, which has the effect of compressing outliers. 

25−
t

 
7     Model design and methodology 
 
Neural networks can be powerful function approximators and thus lend themselves well to 
financial time series prediction, a form of ‘weak’ modeling in which the underlying equations 
of the system are not readily available (unlike so called ‘strong’ models). However, weak 
models gain their flexibility via the use of many parameters which can lead to the danger of 
overfitting the data.  This concept is embodied in the so called bias/variance trade off. The 
modeler’s objective is to produce a statistical model of the underlying data generating process 
which then generalizes well out of sample. If too many parameters are used there is a 
tendency for the model to overfit the data which leads to poor generalization ( the model has a 



high variance in the estimated parameters and a low bias in that it has the ability to fit a wide 
variety of functions). Conversely, if too few parameters are used it may be too inflexible to 
extract the relevant features of the underlying process (it is said to have a high bias and low 
variance).  The ultimate goal is to have a model with low variance and low bias. Given that 
financial time series tend to have a very low signal to noise ratio, overfitting the data is a real 
possibility. As such, we lean towards the low-variance/high-bias choice and constrain the 
network’s ability to overfit the data by restricting the number of hidden neurons used. 

 
There are different approaches when it comes to deciding how much data to use for training a 
network. One view is that the market is always changing and therefore one does not want to 
use data too far back in history as there is a danger that much of it will be redundant. The 
other approach is to use as much data as is available, reasoning that the only way to have 
confidence in the model’s final results is if it has acceptable performance over as long a data 
history as possible. We subscribe to the latter approach and therefore use as much of the 
available data to train the networks whilst making sure to leave a large enough out of sample 
period for final analysis. 

 
Initially, the data set was divided into training, validation and test sets as shown in table 2.  
All networks had 1 hidden layer with 5 input units and 1 output unit. Input units were linear 
while tanh units were used for the remaining layers. In an attempt to deal with the 
bias/variance trade off and to achieve structural stabilization within the model, networks with 
hidden layers of 1 to 10 units were tested. The objective was to find the network architecture 
which relied on the least amount of parameters (hidden units) yet delivered the most 
consistent performance. As we wished to use as much data to train the final networks as 
possible the following training regime was decided on. 

 
First, all potential network architectures for each objective function were trained to 
convergence on the training set data with the resulting validation set performance analyzed. 
Then both sets were alternated and the process repeated. This allowed out of sample 
performance to be monitored on both training and validation data in an effort to make sure 
that the final architecture chosen had stable performance.  It was found that networks with 2 
hidden units produced the most stable results over all objective functions. Although some 
networks with more hidden units produced better performance, this performance varied too 
widely across individual trials. 

 
Finally, networks for each objective function were trained to convergence on the joined 
training and validation sets (see Table 3) and their performance analyzed on the final 935 day 
testing set. Twenty training runs, each with populations of 150 networks, were used for each 
objective function (the total of 140 runs took approximately 170 hours on a 200Mhz PC). The 
outputs of the top 10 performing networks were then averaged to produce the final results for 
each objective. 
 
 
Table 2. 
Set Dates Length 
Training set 12th April 1983 to 6th January 1989 1456 days 
Validation set 7th January 1989 to 7th October 1994 1456 days 
Final testing set 10th October 1994 to 30th June 1998    935 days 
 
Table 3. 
Final sets      
Training set 12th April 1983 to 7th October 1994   2912 days
Final testing set 10th October 1994 to 30th June 1998    935 days 
 
 



 
8     Results 
 
The final results for all objective functions over the training period of 2912 days are presented 
in Table 4. Also shown are the results for the benchmark buy and hold (B&H) strategy (in 
practice this would involve rolling over a long position at each rollover date). No slippage or 
transaction costs were taken into account. 
 
Table 4. In sample results for all objective functions based on data from 1983 to 1994. 
 

 TLR MSE SR TLRP 0% TLRP 10% TLRP 15% TLRP 20% B&H
Total Log Returns 88.08 44.08 79.29 66.46 52.62 45.22 50.2 28.4
Avg log trade  0.17 0.09 0.15 0.13 0.15 0.19 0.2 na

    
Total net profit $177.08 $97.78 $166.22 $139.23 $113.81 $100.84 $104.80 $58.43
Gross profit     $385.14 $318.12 $381.58 $313.28 $222.29 $164.88 $162.12 na
Gross loss       -$208.06 -$220.34 -$215.36 -$174.05 -$108.48 -$64.04 -$57.32 na

    
Sharpe Ratio 1.46 0.98 1.30 1.23 1.23 1.26 1.43 0.54
% of time in Market 100% 100% 100% 68% 42% 30% 22% 100%
Total # of trades 511 463 538 496 349 237 252 na
Number winning trades 301 255 319 300 216 163 168 na
Number losing trades 210 208 219 196 133 74 84 na
Percent profitable 59% 55% 59% 60% 62% 69% 67% na

    
Largest winning trade $9.75 $11.63 $9.75 $9.53 $9.53 $9.53 $9.75 na
Average winning trade $1.28 $1.25 $1.20 $1.04 $1.03 $1.01 $0.97 na
Largest losing trade -$4.19 -$5.59 -$3.91 -$4.09 -$3.13 -$2.97 -$3.00 na
Average losing trade -$0.99 -$1.06 -$0.98 -$0.89 -$0.82 -$0.87 -$0.68 na

    
Ratio avg win/avg loss 1.29 1.18 1.22 1.18 1.26 1.17 1.41 na
Avg trade(win & loss) $0.35 $0.21 $0.31 $0.28 $0.33 $0.43 $0.42 na

    
Max consec. winners 9 9 10 10 12 15 13 na
Max consec. losers 9 8 6 5 7 3 8 na
Avg # days in winners 5 6 5 4 4 3 3 na
Avg # days in losers 6 6 5 4 4 4 3 na

    
Max intraday drawdown -$9.67 -$15.45 -$11.65 -$9.98 -$8.47 -$5.46 -$4.98 -$20.21

Notes: All log figures are multiplied by 100. Currency figures are in thousands of US dollars. All results are based on trading one  
US Treasury bond futures contract. 
 
Of those models that are always in the market, it is clear that the MSE objective delivers the 
worst performance. Apart from lower total return (approximately half that of the TLR 
objective) and average trade statistics, it also suffers from a comparatively large drawdown of  
$15450.00. Inspection of the cumulative equity curves for the MSE, SR and TLR objectives 
in Figure 1 also show the poor performance of the MSE objective, including a flat period in 
the cumulative equity curve from 1988 to 1993, followed by the large drawdown previously 
mentioned  (the vertical line at the right of the graph shows the division between in and out of 
sample results). The SR and TLR objectives fair much better but are closely correlated. This 
is evident in the similarity of their equity curves and also in the percentage profitable figures, 
which are equal at 59%, with the TLR network delivering the superior performance overall. 
All the models outperform the B&H strategy. The fact that the SR model did not perform as 
well as the TLR model is a possible indication that there may not be enough information 
within the input features to take advantage of the inherent SR risk adjustment. 
 



The out of sample performance of these models (see table 5 and figure 3) is fairly consistent 
with the in sample results. The MSE model continues to deliver relatively poor performance, 
including another large drawdown of $20700.00 – far too high a figure for this model to be 
traded with real money.  
 
Examination of the TLRP models in Tables 4 and 5, along with their respective equity curves 
in figure 2, show that as the penalty term increases from 0% to 20%, the percentage of trades 
that were profitable rises from 60% to 67% in sample. Average trade figures rise from 
$280.00 to $420.00, along with a decrease in the average days spent in each trade. Like the 
other models, there seems to be a fair amount of consistency between the in and out of sample 
results except for the 20% TLRP model, where performance drops out of sample (see figure 
4). What is interesting is that it continues to have near 70% accuracy but the average trade 
decreases from $420.00 to $270.00 as the avg. win/loss ratio drops from 1.41 to 1.03. Even 
though the TLRP models spend less time in the market than the B&H strategy, all except the 
20% objective deliver superior out of sample performance. 
 
Table 5. Out of sample results for all objective functions based on data from 1994 to 
1998. 
 

TLR MSE SR TLRP 0% TLRP 10% TLRP 15% TLRP 20% B&H
Total Log Returns 24.22 17.26 18.35 22.4 15.42 15.02 10.83 11.94
Avg log trade  0.14 0.11 0.09 0.13 0.12 0.14 0.1 na

   
Total net profit $63.04 $44.41 $48.16 $57.26 $39.48 $39.97 $28.21 $30.31
Gross profit     $120.71 $104.89 $115.14 $101.89 $77.85 $67.94 $52.63 na
Gross loss       -$57.67 -$60.48 -$66.98 -$44.63 -$38.37 -$27.97 -$24.42 na

   
Sharpe Ratio 1.80 1.23 1.35 1.92 1.63 2.00 1.49 0.82
% of time in Market 100% 100% 100% 72% 54% 45% 33% 100%
Total # of trades 175 154 199 166 131 113 105 na
Number winning trades 103 86 107 105 81 76 71 na
Number losing trades 72 68 92 61 50 37 34 na
Percent profitable 59% 56% 54% 63% 62% 67% 68% na

   
Largest winning trade $4.88 $4.60 $4.59 $4.59 $3.13 $3.56 $2.53 na
Average winning trade $1.17 $1.22 $1.08 $0.97 $0.96 $0.89 $0.74 na
Largest losing trade -$3.22 -$3.31 -$3.22 -$3.16 -$3.16 -$3.12 -$3.00 na
Average losing trade -$0.80 -$0.89 -$0.73 -$0.73 -$0.77 -$0.76 -$0.72 na

   
Ratio avg win/avg loss 1.46 1.37 1.48 1.33 1.25 1.18 1.03 na
Avg trade(win & loss) $0.36 $0.29 $0.24 $0.34 $0.30 $0.35 $0.27 na

   
Max consec. winners 8 14 7 7 13 10 15 na
Max consec. losers 4 5 5 4 4 5 3 na
Avg # days in winners 5 6 5 4 6 4 3 na
Avg # days in losers 5 6 4 4 4 4 3 na

   
Max intraday drawdown -$6.47 -$20.70 -$5.81 -$7.75 -$9.93 -$5.59 -$5.56 -$14.78

Notes: All log figures are multiplied by 100. Currency figures are in thousands of US dollars. All results are based on trading one  
US Treasury bond futures contract. 
 
With an out of sample sharpe ratio of 2.0, the TLRP15% objective seems to perform well 
however, on closer inspection it has an associated drawdown of $5.59, compared with that of  
$6.47 for the TLR objective which gains an extra 40% in profits by being constantly in the 
market. Moreover, the TLRP15% objective, with a win/loss ratio of 1.17, relies on high trade 
accuracy for its profit as opposed to the TLR model, which has a win/loss ratio of 1.30 and 



hence a more desirable balance between trade accuracy and amount gained per trade. The 
amount of days spent in losers and winners seems to be fairly consistent at 5 days for the TLR 
objective. It may be possible to the use stops to improve this ratio. 
 
An interesting corollary to these results can be observed by looking closely at the cumulative 
equity curves for all objectives in figures 1 and 2. From 1985 to 1987 all equity curves 
experience a steep rise until the time of the October 1987 crash, at which point the curves 
flatten out, something that is especially noticeable with the MSE objective. This flat period 
persists until about 1993 at which point the equity curves begin to rise again at a steeper rate. 
This would seem to indicate that there was a structural shift in the relationship between stocks 
and bonds at that time. Further research is needed to gain more insight into this observation.  
 
9     Implementation 
 
It should be noted that there are some implementation problems with the final models. The 
day session of  S&P500 futures closes 75 minutes after that of the US Tbond futures. In order 
to put the models into practice closing prices from both contracts are required at the time of 
the Tbond close, therefore a  modification in the trading strategy is needed. There are a 
number of possible solutions to this. The simplest method is to trade the Tbond during the 
evening session at the close of the S&P500 day session. To give an indication of the resulting 
difference that could be expected we recalculated the TLR results on daily data by assuming 
trades were made on the following day’s opening price and found a difference of less than 1% 
in total log returns. This difference is likely to be even less if trading took place at the time of 
the S&P500 close. 
 
10     Conclusion 
 
We have researched the feasibility of using genetically trained neural networks in conjunction 
with profit oriented objective functions to trade the US Tbond future. The results show some 
promise in this endeavor in that the networks seem to have captured an on going relationship 
between the two series, leading to profitable trading of the US Tbond futures contract from 
1983 to 1998. Further research is required into the exact nature of this predictive relationship 
in order to gain additional confidence in the underlying models. Our results lend further 
support to previous findings that traditional statistical measures of error may be inappropriate 
for use as objective functions when designing trading models in this way. 
 
Lastly, there is always a danger of ‘datasnooping’ when building financial forecasting models 
based on finite datasets. Even if all preventive measures are taken in an attempt to eliminate 
this possibility, one can never be absolutely certain that is has not taken place. Research and 
design of trading models tends to be a continual process and it is unlikely that a researcher 
will arrive at a successful model on the first attempt. It is quite possible that during this 
ongoing process, a priori knowledge of the full dataset could lead to inadvertent 
‘datasnooping’. Indeed, supporters of the EMH would argue that most, if not all trading 
models which outperform the market on a risk adjusted basis, are the result of inadvertent 
‘datasnooping’.  
 
 
 
 
 
 
 
 
 
 
 



Figure 1. Cumulative equity curves for TLR, SR and MSE objectives. 
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 Figure 2. Cumulative equity curves for TLRP objectives. 
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Figure 3.     Figure 4. 
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