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� Introduction

It is well known that one of the obstacles to e�ective forecasting of exchange rates is het�
eroscedasticity �input dependent conditional variance�� The autoregressive conditional het�
eroscedastic �ARCH� model and its variants have been used to estimate a time dependent
variance for many �nancial time series� However� such models are essentially linear in form
and we can ask whether a non�linear model for variance can improve forecasting results just
as non�linear models �such as neural networks� for the mean have done�

In this paper we consider two neural network models for variance estimation� Mixture
Density Networks ��� �	
 combine a Multi�Layer Perceptron �MLP� and a mixture model
to estimate the conditional data density� They are trained using a maximum likelihood
approach� However� it is known that maximum likelihood estimates are biased and lead to
a systematic under�estimate of variance� More recently� a Bayesian approach approach to
parameter estimation in such models has been developed ��
 that shows promise in removing
the maximum likelihood bias� However� up to now� this model has not been used for time
series prediction�

Here we compare these algorithms with two other models to provide benchmark results� a
linear ARIMA model and a conventional neural network trained with a sum�of�squares error
function� In both these cases� the model estimates the conditional mean of the time series
with a constant variance noise model� This comparison is carried out on daily exchange rate
data for �ve currencies�

In this paper we are concerned with models that predict the conditional variance for the
next time step� The conditional variance can be used to provide error bars� �also known as
prediction intervals� in the regression literature� around the conditional mean� When the
size of the error bars increases� then the value of the next forecast is less certain� This is
less useful for options pricing than longer term variance forecasts� but the information can
be incorporated into trading rules� For example� the size of error bars is a measure of how
likely the predicted price movement is likely to be accurate� We are interested in comparing
the generalisation performance of di�erent models and use log likelihood on out of sample
data with one step ahead prediction to compare results�

The rest of this paper is organised as follows� In section � the various di�erent models
that we employ are described and contrasted� Section � describes the methodology that
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is used in the empirical trials and then discusses the results� In the �nal section we draw
together the main conclusions of this study and suggest future avenues of research�

� Models

In this section we shall describe the main features of the models that we are comparing�
Throughout this paper we shall use zt to denote the target values �the actual time series
values� and yt to denote predictions made by models� For simplicity� we shall assume that
the time series is univariate� although all the methods can be extended to multivariate time
series�

��� ARIMA model

The autoregressive�integrated�moving average scheme �ARIMA� is a linear model that ex�
presses an output rt at time t in terms of previous outputs and random e�ects �or noise��
�t� which are the residuals �i�e� yt� zt� the di�erence between predicted and actual values at
time t� of the model at earlier time steps�

yt � � �

pX
i��

�iyt�i � �t �

qX
j��

�j�t�j ���

Often a time series may be di�erenced to remove trends� A model of the form given by
equation ��� that is applied to a time series that has been di�erenced d times is said to be
of orders p� d and q� written ARIMA�p� d� q�� The � term is a constant drift term�

The parameters �� �i� �j are estimated from a training dataset� We used the following
method to determine the model structure �de�ned by the integers p� d� and q��

� If the partial autocorrelation function �PACF� of the di�erenced series displays a sharp
cuto� and�or the lag�� autocorrelation is positive � i�e�� if the series appears slightly
underdi�erenced� � then we tried adding an AR term to the model� The lag at which
the PACF cuts o� is the indicated number of AR terms�

� If the autocorrelation function �ACF� of the di�erenced series displays a sharp cuto�
and�or the lag � � autocorrelation is negative � i�e�� if the series appears slightly
overdi�erenced� � then we tried adding an MA term to the model� The lag at which
the ACF cuts o� is the indicated number of MA terms�

� It is possible for an AR term and an MA term to cancel each other�s e�ects� so if a
mixed ARMA model seems to �t the data� we also tried a model with one fewer AR
term and one fewer MA term� particularly if the parameter estimates in the original
model require more than �� iterations to converge�

If we assume that the random e�ects �t have a Gaussian distribution N��� ��� with zero
mean and constant variance� then we can compute the log likelihood of the actual target
value once we have estimated ��� This can be done by calculating the sample average of
the residuals on the training set� It is then straightforward to estimate the parameters
using a maximum likelihood approach� Thus the ARIMA scheme is a linear model for the
conditional mean with a constant noise variance�
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��� MLP with constant variance

The multi�layer perceptron �MLP� is a neural network model that can be used for regression
�as here� or classi�cation� In the case of regression� each network output is the linear
combination of the activations of n so called hidden units� each of which is a nonlinear
function applied to a linear combination of the inputs� If� for the sake of simplicity� we
assume that the output is one dimensional� we can write this model in the form

y � f�x�w� �
nX
i��

ai��u
T
i x � bi� ���

where x is the input vector� w denotes the set of parameters �or weights� in the model� ui
are the weights from the inputs to hidden unit i� bi is the bias for the ith hidden unit� and ai
are the hidden to output weights� The function � is the activation function� and is chosen to
be nonlinear �for example tanh�� When applied to time series forecasting� the input vector
x is typically a vector of previous values from the time series� which makes the network a
non�linear auto�regressive model� Some work has been done on incorporating past residuals
as inputs for �nancial time series forecasting ��
 with some success� but we will not pursue
this approach here �partly because we are interested in using the residuals to model the
conditional variance of the time series��

The ARIMA model is parametric in that a speci�c functional form �linear in this case�
is assumed and the parameters are then �tted from the data� In contrast� the MLP can be
viewed as a nonlinear �due to the activation function� semi�parametric data model� This is
because the MLP allows a very general class of functional forms �in fact� the MLP approxi�
mates any continuous function of its inputs to an arbitrary accuracy� see �	� �� �
� in which
the number of adaptive parameters �which is governed by n in equation �� can be varied in
a systematic way to build ever more �exible models� and where this number is independent
of the training data set size�

In the usual approach to regression� the sum of squares error function is used�

E �
�

�

NX
k��

�f�xk�w�� zk

� ���

where the index k runs over the N training patterns� Then it is well know �see ��
� that the
optimal function �in the sense of minimising the error� is

f�x�w� � hzjxi ���

the conditional mean of the target z given x� It can also be shown that at the global
minimum of the error function� its residual value is the average variance of the target value
around its conditional average� We can represent the conditional distribution of the target
data by a Gaussian function with centre �depending on the input x� given by f�x�w�� and
a constant variance determined by the residual error�

The use of a least squares error function does not require the conditional distribution of
the target data to be Gaussian� but it cannot distinguish between a Gaussian distribution
and any other distribution with the same conditional mean and constant variance� If we
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do assume that the target has a Gaussian conditional distribution� then the sum of squares
error function arises naturally through a maximum likelihood approach� assuming that the
data is drawn independently from some �xed distribution� The error function in equation �
is given by E � � lnL� c where c is a constant �which can be ignored when minimizing E�
and L� the data likelihood� is given by

L �
NY
k��

p�zkjxk�p�xk� �	�

Time series data is not an independent sample� but Williams has shown in ���
 how a similar
decomposition can be achieved under the assumption that the conditional density at each
time step depends only on a �xed number of previous values from the time series�

p�xtjxt��� � � � � x�� � p�xtjxt��� � � � � xt�T � ���

Despite the constant variance constraint� MLPs have been used with great success for a
number of forecasting problems�

To train a neural network� it is necessary to minimise the value of E by adjusting the
parameter vector w� This can be done with a number of di�erent non�linear optimisation
algorithms� however� most of these require the partial derivatives

�E

�w
���

to speed up the search in high dimensional parameter space� One of the reasons for choosing
a model of the form � is that these partial derivatives can be computed e�ciently using the
back�propagation algorithm� In our experiments we used quasi�Newton methods with the
BFGS update formula �see ���
 for an implementation�� or scaled conjugate gradient ���
�

Of course� a maximum likelihood approach with no regularisation to penalise overly�
complex solutions is prone to over��tting� where the noise in the �nite training dataset is
�tted� rather than the underlying generator of the data �the true conditional mean�� In this
study� rather than use a Bayesian regularisation method to solve this ��
� we simply used
early stopping �as in ���
�� This method is based on the fact that during a typical training
session� the training set error decreases monotonically� However� the error measured with
respect to independent data� the validation set� often shows a decrease at �rst followed by
an increase as the network starts to over��t� Training can therefore be stopped at the points
where the validation set error increases� this network is expected to have good generalisation
performance�

There are two drawbacks of this approach with �nancial time series� Firstly� the amount
of noise �and indeed� the likely non�stationarity of the underlying data generator� mean that
early stopping may stop too early� with an under�trained network� Secondly� the validation
set has to be independent from the training data� and so if we select contiguous blocks
of data �to minimise the correlation between datasets�� this means that the test dataset
is separated by a longer interval of time from the training set �assuming that the order is
training� validation� test�� This increases the likelihood of poor generalisation caused by
non�stationarity�
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��� Mixture Density Networks

The MLP provides a very �exible model for predicting the conditional mean of an unknown
function� However� the constant variance assumption is often unrealistic� In �nancial data�
for example� many time series are known to exhibit heteroscedasticity� and it is therefore
logical to extend the simple MLP framework to estimate the conditional variance of the
target data in addition to the conditional mean� This variance can be used to give a more
accurate estimate of the noise model�

A maximum likelihood approach to this problem is quite straightforward� For each target
value� the neural network has two outputs� each of which is connected to all the hidden units�
one represents the target value �the conditional mean� in fact�� while the other represents
the conditional variance� The conditional mean is a linear combination of the hidden units
as in equation �� However� the variance must be a non�negative quantity� It is convenient
to use an exponential function to constrain the network output to the correct values�

���x� � exp

�
nX
i��

ai��u
T
i x� bi�

�
���

It is a straightforward exercise in calculus to calculate the relevant partial derivatives of the
negative log likelihood of the data� and then optimisation algorithms can be used to train
the network parameters� In our experiments� we used a quasi�Newton algorithm with the
BFGS update method for training and early stopping to regularise the network� Similar
models have been applied to predicting time series before� In ��	
 a pair of networks were
trained with a more complicated procedure�

If the output is multi�dimensional then this approach can be generalised to a multi�variate
Gaussian noise model� where the network predicts the conditional mean and the covariance
matrix� In ���
 this approach is used to model the correlations between multiple currency
markets�

This model simply extends the MLP by allowing the variance of a Gaussian representing
the conditional density to be input dependent� However� by using more complex conditional
densities �for example� mixture models� with parameters estimated by the network� it is
possible to model arbitrary conditional distributions ��
� The probability density of the
target data is represented by a linear combination of kernel functions of the form

p�tjx� �
mX
j��

�j�x��i�tjx� ���

where the mixing coe�cients �j satisfy the following constraints

�j�x� � � and
mX
j��

�j�x� � � �x ����

Various choices for the kernel functions � are possible� In this paper we have chosen Gaus�
sians with input dependent means and variances� For a good model� the relationship of the
mixing coe�cients and the kernel parameters on the input vector x may be non�linear� It
therefore makes sense to use a neural network to model this relationship�

	



��� Bayesian Inference of Noise Levels

Instead of using a maximum likelihood approach to estimating the model coe�cients �or
weights�� which attempts to �nd a single optimal set of values� the Bayesian approach gener�
ates a probability distribution function in parameter space representing the relative degrees
of belief in di�erent values for the parameter vector� This function is initially set to some
prior distribution p�w�� Once the training data D has been observed� the prior is con�
verted into a posterior distribution p�wjD� through the use of Bayes� theorem and the data
likelihood p�Djw��

In principle we make predictions and estimate ���x� by averaging the predictions made
by all possible networks weighted by their corresponding posterior posterior probability�
However� as this posterior distribution tends to be very complex� this procedure requires
computationally intensive methods such as Markov Chain Monte Carlo� A more practical
approach is to select a single network given by the mode of the posterior distribution �i�e�
the parameter vector wMP that maximises p�Djw�� Because we estimate the probability
distribution of the parameter estimates� we can also give error bars on our forecasts that
take into account the uncertainty in the weight vector�

It is well known that the maximum likelihood estimate of variance is biased �it tends
to underestimate variance�� The regularisation methods that we have described above have
drawbacks for �nancial time series� and so it is of interest to apply a Bayesian approach to
learning as this should� in theory� give rise to unbiased estimates�

Although the Bayesian framework is very attractive from a theoretical point of view� it
can be di�cult to apply in practice� MLP networks give rise to posterior weight distributions
that are di�cult to evaluate ��
� Instead we use a generalised linear regression model �which
is basically equivalent to a radial basis function �RBF� network� as in ��
� The regression
output is given by

y�x�w� � w
T��x� ����

where � represents a vector of basis functions �one of which is a constant �� � � and is the
bias term�� It turns out to be convenient to use two separate networks� one for regression
and one for the variance� The inverse variance model is given by

	�x�u� � exp�uT��x��� ����

The basis functions � and � are chosen to be Gaussians �in this instance� other choices are
possible� see ��
� and are parameterised so that they model the unconditional probability
density of the input data using the EM algorithm to train a mixture model with the same
number of centres ��
�

The algorithm involves a hierarchical approach to modelling with hyperparameters� to
control the prior distributions that are estimated from the data� Between each re�estimation
of the hyperparameters the most probable value of the weight vectors w and u is found�
The optimisation of w turns out to be straightforward� as the error for this network �based
on penalised negative log likelihood� is quadratic in the weights� and so can be solved by
standard techniques from linear algebra� �This is another reason for choosing an RBF
network in place of an MLP�� The error function for u is not quadratic� so we use a standard
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Figure �� Datasets for US dollar�Canadian dollar� training�validation �left� and test �right��

non�linear optimisation algorithm� In the work reported here� the scaled conjugate gradient
algorithm was used ���
�

The algorithm described involves computing the Hessian matrix �the matrix of second
order partial derivatives�� Some of the intermediate steps of this computation require the
storage of matrices of size O�N��� where N is the number of training points� Even on
workstations� this put an upper limit on the size of dataset that can be used for training� In
our experiments� we used training sets of size at most ���� Because the Bayesian approach
to training provides regularisation �and thus controls network complexity�� there is no need
for a validation set� so we sub�sampled the combined training and validation sets�

� Experiments

��� Methodology

We used data from �ve currency markets� US dollar�Canadian dollar �CAD�� US dol�
lar�sterling �GBP�� US dollar�Deutsche Mark �DEM�� US dollar�Swiss Franc �CHF�� US
dollar�Japanese Yen �JPY�� The daily closing prices in the period June �� ���� to May ���
���� were used� giving �	�	 time periods in total� For the neural network models� each input
pattern consisted of the �ve previous prices� and the price for the next time step and the
conditional variance were the outputs� The structure of the ARIMA models was determined
using the method described in section ���� We used the �rst �	�	 patterns as a training set�
the next 	�� for a validation set �where relevant for early stopping� and the last 	�� as the
test set� Where early stopping was used� the validation set performance was evaluated every
	� cycles of the training algorithm�

We are interested in the generalisation performance of the di�erent models� so they were
compared on the basis of the negative log likelihood of the test set �i�e� out of sample�
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Figure �� Datasets for US dollar�Swiss Franc� training�validation �left� and test �right��
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Figure �� Datasets for US dollar�Deutsche Mark� training�validation �left� and test �right��
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Figure �� Datasets for US dollar�British pound� training�validation �left� and test �right��
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Figure 	� Datasets for US dollar�Japanese Yen� training�validation �left� and test �right��
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testing�� Of course� as there is no on�line adjustment of parameters on the test set� all the
models are vulnerable to the e�ects of non�stationarity in the test sets�

Following ���
 we can identify the following sources of variation when evaluating the
generalisation performance of di�erent algorithms�

�� Random selection of test cases�

�� Random selection of training set�

�� Random initialisation of learning method�

�� Stochastic elements in the training algorithm�

	� Stochastic elements in the predictions from a trained method �e�g� Monte Carlo esti�
mates from the posterior predictive distribution��

Rasmussen goes on to describe procedures to estimate the e�ects of these causes of variation
in order to measure statistically the true signi�cance of di�erences in generalisation perfor�
mance� Unfortunately� these rely on being able to select training and test data from the
same distribution independently� something which clearly breaks down for time series data�
Hence we will not be able to give results of signi�cance tests for the di�erences between
the generalisation performance of di�erent algorithms� This is something that we intend to
investigate in the future�

��� Results

We used very simple data pre�processing� the training data was normalised to zero mean
and unit variance for the neural network models� The test data was normalised with the
same linear transformation� Although most work in this �eld models log returns �i�e� log zt�
log zt���� we found that this gave worse results for the ARIMA models �some of which failed
to converge� so we modelled raw prices throughout� Table � contains the generalisation
performance of each model tested�

We had little di�culty with training any of the models with the exception of the Bayesian
treatment of input dependent noise� These networks often converged to local minima� and
when the size of the regression network was increased to �� hidden units� the Hessian became
singular and the weight vector over�owed� The results in table� were obtained for a regression
model with �� hidden units� and a noise model with �� hidden units�

The generalisation results demonstrate the the Mixture Density Network method per�
forms best on all markets� There is a slight improvement in performance for a model with a
mixture of three Gaussians at the output� Early stopping had very little e�ect on generali�
sation performance�

The results on the Japanese Yen data were much more varied than for the other currencies�
This was particularly so in the case of the Bayesian treatment� where the log likelihood for
the test set was usually in the order of ���� The �gure given in table � is very much an
outlier� This was because the regression network performed very poorly towards the end of
the test set� where the range of inputs lies well outside that in the training data� This is a
particular problem for the RBF network when local basis functions �like Gaussians� are used�
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CAD CHF DEM GBP JPY
ARIMA ������� ������� ������� ��	�	�� �������
MLP ������� ���	��� ������� ���	��� �������
MDN � centre ������� ������� �������� ��	���� ������
MDN � centres ������� ������� ���	��� ��	���� �������
MDN 	 centres ������� ����	�	 ������� ��	���� �������
Bayesian model ��		��� ������	 ������� ������� �����

Table �� Negative log likelihood of test data
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Figure �� Predicted test data variance for US dollar�Japanese Yen� �rst �	� points �left�
and second �	� points �right��

since these will extrapolate extremely poorly outside the range of data they were trained on
as their response will be zero� An MLP� which uses linear combinations of its inputs� will
extrapolate in a somewhat more predictable and reasonable fashion� The best answer to this
problem is to detect novel data� and re�train �or adjust� the parameters in the model� Even
for the best model� the predicted test data variance contained some extremely large values�
as can be seen in �gure �� The variance results for the other currencies ��gures � and � are
more in line with expectations�

The structure of the ARIMA models� and the variance parameter for the ARIMA and
MLP models are given in table �� It is rather surprising to see that the variance for the
ARIMA model �which is the average training set residual� is less than that for the MLP� It
seems likely that this is due to the moving average terms making a signi�cant contribution
to the accuracy of the conditional mean prediction�

Because all the ARIMA models used di�erencing� we experimented with pre�processing
the data for the neural network models by taking the di�erence �i�e� zt � zt���� but it did
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Figure �� Predicted test data variance for US dollar�Canadian dollar �left� and US dol�
lar�Swiss Franc �right��
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Figure �� Predicted test data variance for US dollar�Deutsche Mark �left� and US dol�
lar�British pound �right��

��



CAD CHF DEM GBP JPY
ARIMA order �	� �� �� ��� �� �� ��� �� �� ��� �� �� ��� �� ��
ARIMA variance ����� ���� ��	�� ���� ����� ���� ����� ���� ��	�� �����

MLP variance ����� ���� ����� ���� ����� ���� ����� ���� ����� ����

Table �� Model structure

not change generalisation performance to any noticeable degree�

� Conclusions

This paper has demonstrated that more complex models for the conditional variance for
currency markets can improve generalisation performance� Mixture Density Networks� which
in their most general form can model non�Gaussian conditional probability distributions gave
the most accurate results� Early stopping had little e�ect on generalisation performance�
which suggests that more principled forms of regularisation may be required� This was why
a Bayesian approach� which has been used successfully on other regression problems� was
tried on this data� but the results proved to be disappointing� This seemed to be mainly
because of the di�culty of �tting the RBF networks� it is likely that the use of non�local
basis functions �as in ��
� would improve this�

There is still scope for improving the models that we use for this problem� Some issues
that we intend to address are�

� Including moving average terms in the neural network models� The only technical dif�
�culty with this is calculating the relevant partial derivatives e�ciently� as the network
structure becomes recursive�

� On�line estimation of variance to cope with non�stationary data� In ���� ��
 constructive
on�line algorithms based on RBFs were used to predict the next price in the Deutsche
Mark�French Franc market� These models were able to correct their forecasts after
major shocks much better than a range of alternatives� Generalising this to estimating
the conditional variance as well would give a better assessment of risk shortly after
major changes in market conditions� and would also cope with more gradual shifts in
behaviour�

� Developing methods for deciding a good structure for the variance model� When pre�
dicting the conditional mean� we can use the ACF and PACF �as for ARIMA modelling�
to give some clues to the optimal model structure� We know of no such methods for
conditional variance� It is possible that Automatic Relevance Determination �ARD��
which is a Bayesian approach that has been used for regression problems ���
�

It is also likely that high frequency data would exhibit more interesting� �i�e� less Gaussian�
with a skew or even multi�modal distribution� conditional densities�
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