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Abstract

1

1.1

A well known method of managing the risk whilst maximising the return of a portfolio
is through Markowitz Analysis [11] of the efficient set. A key pre-requisite for this
technique is the accurate estimation of the future expected returns and risks (vari-
ance of returns) of the securities contained in the portfolio along with their expected
correlations. The estimates for future returns are typically obtained using weighted
averages of historical returns [19] of the securities involved or other (linear) techniques.
Estimates for the volatilities of the securities may be made in the same way or through
the use of (G)ARCH [5] [3] or stochastic volatility (SV) [7] techniques.

In this paper we propose the use of neural networks to estimate future returns and
risks of securities. The networks are arranged into committees [6]. Each committee
contains a number of independently trained neural networks. The task of each com-
mittee is to estimate either the future return or risk of a particular security. The inputs
to the networks of the committee make use of a novel discriminant analysis technique
we have called Fuzzy Discriminants Analysis.

The estimates of future returns and risks provided by the committees are then
used to manage a portfolio of 40 UK equities over a five year period (1989-1994). The
management of the portfolio is constrained such that at any time it should have the
same risk characteristic as the FTSE-100 index. Within this constraint, the portfolio
is chosen to provide the maximum possible return. We show that the managed portfo-
lio significantly outperforms the FTSE-100 index in terms of both overall return and

volatility.

Introduction

In this paper we present a forecasting and trading methodology for financial
markets. Figure 1 shows a general overview of the system. The raw data from
the markets is pre-processed for outliers and other errors and then stored to form
a database of historical time series. Prediction models for the future returns
and volatilities of selected securities are formulated using transformed features
of the price histories and other economic data from the database. Combinations
of these predictors are then used as inputs to trading models. A variety of
different prediction and trading models are available to the system. This allows
a comparison of the relative performance of different models in terms of both
predictive ability and profitability to be made. A more detailed description of
each aspect of the system follows.

Pre-processing

The raw economic data available to the system will be provided from services
like Datastream, Reuters or Telerate. The data is filtered and pre-processed us-
ing methods appropriate for the types of time series examined. It is then stored
in the historical database and made available to subsequent feature extraction
and feature transformation processes. The following types of pre-processing are
used.

Most time series are subject to outliers. These outliers may be rejected
using methods from robust statistics. Irregularly spaced data (i.e. tick by tick



Introduction 3

Market
l Pre-processing
2[E|E - :
“E[EE Historical Database

L

/\

Extract Features

Features

Transform features

Feature Transtorm

J, i
K
|

13- .
Bt o Predictors

Trading system

Figure 1 Overview of the management process



1.2

1.3

1.4

1.5

Introduction 4

FX/FX) may cause problems for some types of prediction models. In such
cases the raw data can be transformed into a time series sampled at standard-
ised intervals [13]. Bond and equity data should be adjusted for the effects of
dividends and coupons.

Feature Extraction

The pre-processed data is made available to a number of feature extraction
modules within the system. Each feature extractor collects information avail-
able up to time ¢ about a particular time series (¢ is the time from which we
wish to make a forward prediction). The feature extractor then produces some
representation of this information. As an example, one possible feature could
consist of the first n lagged first differences of the time series of interest. An-
other possibility would be a feature consisting of the moments of these lagged
first differences.

Feature Transforms

The features extracted in the previous section will hopefully include sufficient
information for better than random predictions to be made about the time series
to be predicted. However, it is likely that a good deal of redundant information
will be included in the features. This redundant information makes the process
of prediction more difficult. It is useful to be able to reduce the dimension of
the input information through a transform that will maintain the significant
information whilst eliminating much of the redundant information. We discuss
in some detail methods for achieving this type of transformation in Section 3.

Prediction

The task of the prediction modules is to take in a number of feature vectors
and to make a prediction for a particular security. In practice this will be
either the expected mean or the expected volatility of the future return. The
types of predictors available to the system include neural networks (multi-layer
perceptron [20]), k-nearest neighbour models, ARIMA models [14], (G)ARCH
and stochastic volatility models.

Prediction Combination

It is possible to use a single predictor to obtain estimates of the expected return
and volatility of each of the securities in the portfolio. However, it has been
shown by a number of authors [9] that a linear combination of a number of
predictors whose parameters have been estimated in independent manners often
give superior results. We use weighted combinations of predictors (committees)
whose weightings are found by OLS optimisation on the training data.
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1.6 Trading Model

Once predictions about the future returns have been obtained for all of the se-
curities the final task is to convert these predictions into an actual set of trading
recommendations. A number of different trading models may be applied.

A speculative trading model is a trading system working on a single time
series. Its task is to recommend a long, short or flat position at any time ¢
based on information available up to that time.

An option pricing model takes the estimates of return and volatility about
a security and then prices options on it using a Black-Scholes [17] type model.

A portfolio management model manages the allocation of securities in a
portfolio. The management process usually involves maximising the return of
the portfolio whilst keeping the risk of the portfolio below a certain level.

2 Portfolio Management of 40 UK Equities

2.1

We shall now illustrate the steps involved in the implementation of a particular
instance of the general system by managing a portfolio of 40 UK equities.

Firstly, we shall examine how a novel feature transformation may be used to
reduce the dimension of the feature vectors. We show how the use of this trans-
form leads to a significant improvement in the performance of the prediction
models.

We then examine the relative performances of a number of possible predic-
tion models (using the feature transformed data as input). We show that a
committee of neural networks is an efficient prediction model able to forecast
both future returns and volatilities of securites.

Finally, we examine two possible trading models that may be used to manage
a portfolio after the prediction networks have been trained. We show that both
trading models are able to significantly outperform the return of the FTSE-100
index over a five year test period. In the case of the second trading model, we
are also able to show that the volatility of return (risk) of the managed portfolio
can be controlled and was found to be marginally less than the volatility of the
FTSE-100 index itself, whilst still significantly outperforming the index in terms
of return.

Data

The financial data used in this paper was composed of 11 years of daily closing
prices for 40 UK equities obtained from Datastream (30 December 1983 - 30
December 1994). The equities chosen needed to pass two requirements. Firstly,
they needed to be members of the FTSE-100 index and secondly, they needed to
be quoted over the full 11 year period. The 40 securities were chosen at random
from the qualifying securities and ordered according to their betas. Along with
the securities, daily closing prices for the FTSE-100 index were obtained for the
same 11 year period.

The data was separated into three periods. The first period was used to train
the neural networks and to optimize other predictors (¢raining set). The second



2.2

Feature Transformation 6

period was set aside for the validation or out of sample testing of the models
(validation set). The third period was used to asses the general performance
of the system on unseen data (test set). The data in the test set was used
only AFTER all of the prediction and trading models had been trained and
optimized. All results given in this paper will be quoted in terms of this test
set which consists of the five year period 30 December 1989 - 30 December 1994.

Pre-processing and Feature Extraction

The Datasteam data contained only a few outliers which were rejected using a
seven standard deviation threshold applied to the returns of the equities. Care
was taken not to edit out the crash of 1987. For the purposes of input to the
predictors, the outliers were replaced by simple interpolation. However, the
days that these prices fell on were marked as untradable for that security. In
terms of managing a portfolio this meant that the holding of that particular
security could not be changed on that day.

Two features were extracted from each timeseries. The first feature was
obtained by concatenating the past 60 normalized daily returns. The second
feature contained estimates of the first four moments of the daily returns for
each time series. These estimates of the mean, variance, skewness and kurtosis
of daily returns were calculated using a range of between the last 10 and 120
lagged observations.

The input to each predictor consisted of these two features calculated for
both the security whose return was being estimated and the FTSE-100 index.
The untransformed input vectors to the predictors were thus 128 dimensional.

3 Feature Transformation

3.1

As mentioned in the previous section, the input vector to each predictor is 128
dimensional. This is high compared to the number of samples (1498) we have
available from which we must construct example vectors to train the neural
networks and other prediction models.

In this section we discuss methods of reducing the dimension of the input
data whilst retaining as much of the original relevant information content as
possible.

Principal Components Analysis

A number of authors have suggested Principal Components Analysis (PCA)
[15] as a method of reducing the dimension of the input vectors for financial
and other pattern recognition applications. PCA works by finding a subspace
of the original input space that preserves the maximum information content
(variance) in the original data when it is projected from the original space onto
the subspace. The projection of the original data onto the subspace is then used
as the input to the predictors. It is thus possible to reduce the input vector
from N dimensions to M dimensions, M < N.
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Figure 2 Cumulative eigenvalue curve for the security Allied

The first requirement for the application of the PCA transform is an analy-
sis of the eigenvectors and eigenvalues of the correlation (or covariance) matrix
formed from the original input data. Let the eigenvalues of the covariance ma-

trix be denoted A;,¢ = 1, ..., N and arranged such that they are monotonically
decreasing i.e. A; > A; ;1. The cumulative eigenvalue curve ¢(z) is defined to be
D i

c(z) = (1)

)OARIDY

The interpretation of this curve is that the value ¢(z) represents the amount
of information maintained in the input vectors if we project them onto the
subspace spanned by the top z eigenvectors. A feature transformation that, for
instance, retains 95 percent of the original information (variance) of the input
data can be obtained by selecting the appropriate value for z. An example of
a real cumulative eigenvalue curve obtained for the original 128 dimensional
input vectors for the security Allied is shown in Figure 2.

Care must be taken when using Principal Components Analysis as a method
of dimension reduction. In particular,

¢ The scale and variance of the input components should be similar. This
may be achieved either by using the correlation matrix (rather than the
covariance matrix) or other techniques, such as Benzecri Normalisation

[2].

¢ In using PCA to reduce the dimension of the data we are equating relevant
nformation in the input vectors with variance. As we shall see in the next
section this is not necessarily what we desire.
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Figure 3 Simple two class problem demonstrating the potential weakness of

PCA

Canonical Discriminants Analysis

Consider the distribution of samples from a simple two-dimensional two-class
problem shown in Figure 3 (a). The first principal component of the data is
shown as vector d@. If we now consider reducing the dimension of the two dimen-
sional input vectors to one dimension using Principal Components Analysis, the
projection of the input samples onto the first principal component is shown in
Figure 3 (b). Clearly we have chosen the worst possible subspace onto which to
project the original input vectors as the two classes are now completely insep-
arable! With a little thought, one can see that the actual vector onto which we
would wish to project the data to maintain the information necessary to dis-
tinguish examples from the two classes is the vector labelled b. The properties
of this vector are that it

1. Minimises the within class variance (W) of the projection of the input
vectors.

2. Maximises the between class mean separation (B) of the projection of the
input vectors.

A transform that is formulated to achieve the above goals by maximising
the ratio of mean separation to variance is the Canonical Discrimanant Analysis
transform [24]. This transform is essentially the generalisation of Fisher’s linear
discriminant function to multiple dimensions [4]. The canonical discriminants
may be found in the following manner.

Let us consider a sample of data X = {Z;, ¢ = 1,...,T} of size T. Each
N x 1 sample vector Z is either a member of class 1 (Z € H;) or class 2 (Z € H,).
For the case of our data we can assume that the two classes refer to samples of
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either positive or negative future returns for the security being examined. Zero
returns can either be excluded or assumed to be positive.
Let us define the Within Class Scatter Matriz Sy as

2

Sw=> 1> @#-m) (&-m)" (2)

e=1 \FeH.

where M, is the mean for class ¢, defined

and n, is the number of samples belonging to class c.
Let us also define the Between Class Scatter Matriz Sp as

Sp =3 n. (M. —m) (M, —m)", (4)

where 771 is the mean of all of the samples (i.e. samples from both classes).

Now consider the projections of the original N dimensional sample vectors
Z onto a smaller M dimensional subspace. We can represent this projection as
a linear transformation

y= ATz, (5)

where A is an NV X M dimensional matrix whose rows are the axes of the
subspace onto which the original vectors, ¥ are being projected.

Let Py denote the within class scatter matrix and Pp denote the between
class scatter matrix of the projected samples. The within class and between
class scatter matrices for the projected vectors can be written in terms of the
transformation matrix A

Py = A" Sw A, (6)

Py = ATSRA. (7)

Recalling the discussion earlier in this section, we seek a transformation
matrix A that will maximise the ratio of Pg to Py (i.e. large between class

mean separations, small within class variances). The rows of the optimal trans-
formation matrix A can be found by solving the generalised eigenvalue problem

SBEii - }\ps’WEiz (8)

for the eigenvectors @;. The top M eigenvectors then define the transfromation
matrix 4.

Fuzzy Discriminants Analysis

In the previous section we saw how we could treat each of the samples used to
train the future return predictors as belonging to one of two distinct classes,
namely those with positive or negative returns. We then derived a transform
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that would reduce the dimension of the input vectors whilst retaining the max-
imum amount of separation between samples of different classes.

A criticism of this approach is that it treats all positive and all negative
returns equally. Thus, a transform that causes a small positive and a small
negative return to map close together in the transformed space is penalised in
the same way as a transform that maps a large positive return close to a large
negative one. For the purposes of maximising the profitability of our trading
system we are most interested in correctly distinguishing between large positive
and large negative returns. In this section we derive a slightly modified version
of the CDA transform that achieves this objective.

The main difficulty with our use of the two-class CDA formulation lies in
the artificial discretisation of what is really a continuous variable (the future
returns of the securities). To overcome this difficulty we shall define each sample
vector Z as belonging to both the up and down class with fuzzy weightings. The
weightings will be a function of the future returns of the sample vector r(Z).
The weightings are constrained such that the sum of up and down weightings
for each sample is 1.00. A number of suitable functions might be used, we have
chosen the following. Let the down weighting of sample vector Z be denoted by
w(1|Z) and the up weighting be denoted w(2|Z). We define the weightings to be

L 1
v(19) = e @) ®)

1 1 (10)
w(2|Z) = —-

1+ exp (—D(r(2)))
where D(.) is a function of the mean y, and standard deviation o, of the future
returns sampled over the training set and the actual return itself »(Z)

— |7‘(f) — ,u,.|
D(r(@) = "Lt (1)
Now that we have obtained expressions for the class weightings for each
sample vector we re-write Equations 2 - 3 of the CDA analysis in terms of these
weightings.

Sw=> (Z w(c|@) (7 — m.) (7 — mC)T) : (12)

c=1 @

where 1, is the weighted class conditional mean, defined by

1
M, = W Y w(c|@)z, (13)

and W, is the weighted number of sample vectors belonging to class ¢
W, = Z w(c|Z) (14)

The derivation of the optimal subspace then proceeds as before. It is hoped
that by re-formulating the problem in these terms the transformation obtained
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Model Mean square % Accuracy % Accuracy
error all large
MLP 128 27.9 52.67 53.67
MLP 40 PCA 19.82 52.24 53.81
MLP 10 CDA 19.34 53.72 57.15
MLP 10 FDA 17.97 53.63 58.87

Figure 4 Table comparing the performance of the different feature transforms

will provide good separation in input space between samples having large pos-
itive and large negative future returns. We shall refer to this transform as a
Fuzzy Discrimanants Analysis, the term fuzzy being a reference to the pseudo-
probabilistic assignment of samples to the up and down return classes.

Results for Feature Transformations

A relative performance comparison of the three different feature transforms was
carried out using the UK equity data. Figure 4 shows the relative performances
of multi-layer perceptron predictors trained using each of these three feature
transforms as input. The predictors were trained to forecast 7 day ahead re-
turns. A benchmark result was also obtained using the original 128 dimensional
input vectors denoted by MLP 128. The subspace dimension chosen for each
feature transform was optimized over the range 5 to 40. It was found that
a 10 dimensional input space gave the best results for CDA and FDA. Forty
dimensions gave the best results for PCA.

The results in Figure 4 quote both mean square prediction error and correct
directional prediction percentages (the percentage of times that the predictor
correctly forecasts the sign of the future return). A result is also given for the
percentage accuracy of the predictors in forecasting the sign of large absolute
returns. A large return is defined to be a return whose absolute magnitude is
greater than 2 percent.

The performances shown in Figure 4 are averaged for 20 different securities
and are quoted in terms of the test set consisting of the previously unseen data
period 30 December 1989 to 30 December 1994.

Clearly all the predictors that used feature transforms achieve lower pre-
diction errors than the untransformed benchmark predictor. In addition, the
CDA and FDA schemes significantly outperform the untransformed and PCA
transformed data schemes. The CDA technique performs slightly better on per-
centage accuracy, whilst the the FDA does better on mean square prediction
error. It can be seen that the FDA performs best when considering its accuracy
of predicting large changes.

In this section, comparisons have been made between the use of different
feature transforms using a multi-layer perceptron as a predictor. In the next
section we will compare the predictive abilities of the multi-layer perceptron,
a committe network and a k-nearest neighbour predictor for forecasting future
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returns. We shall also compare the performance of a committee network and a
stochastic volatility model for forecasting future volatilities.

4 Prediction

4.1

In this section we compare the predictive ability of three different predictors.
These are the multi-layer perceptron (used to predict future returns and volatil-
ities), a k-nearest neighbour model (used to predict future returns) and a
stochastic volatility model (used to predict future volatilities). Before pre-
senting the relative performances of the different models we will briefly review
them giving details of their particular implementation in this work.

Multi-Layer Perceptron

Neural networks have recently received considerable attention in the financial
community [23] [18]. The most commonly used neural network architecture is
the multi-layer perceptron shown in Figure 5.

The basic building block of the multi-layer perceptron is the artificial neuron
shown in Figure 6. A neuron operates by summing the input it receives via
weighted links from other neurons and then outputs a value that is a non-linear
function of this input activation. Let z; be the total activation of neuron 7, y;
the output of neuron ¢ and w;; the weighted link between neurons j and 7 then

Ty = Z WiiYi,
i=1
v = 0(z), (15)
where 6(.) is some non-linear function, usually taken to be sigmoidal,

1
1+ ezp(—=z;)

0(z;) (16)

The multi-layer perceptron is composed of hierarchical layers of such neurons
arranged so that information flows from the input layer to the output layer of the
network, i.e. no feedback connections are allowed. The device hence provides

a non-linear mapping of input vectors to output responses i.e.
F:RM"— > RO (17)

where I, is the number of neurons in the input layer and O, is the number of
neurons in the output layer. The particular mapping performed by the multi-
layer perceptron is determined by the adjustable weighted links between nodes.
It can be shown that a three layer multi-layer perceptron with an arbitarily
large number of nodes in the hidden layer acts as a universal approzimator and
can realize any continuous function [10].

The use of the multi-layer perceptron in this work is shown in Figure 7.
Features obtained from the security whose return is being forecast and the
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Figure 7 Use of the nulti-layer perceptron to forecast future returns and risks
of securities.

FTSE-100 index are transformed using Fuzzy Discriminants Analysis and then
fed into the input layer of a single hidden layer multi-layer perceptron. The
output layer of the network, comprising a single neuron, is then required to
give an output response that is a simple coding of the predicted future return
or risk of the security for a 7 day ahead prediction horizon.

The network is trained using a set of desired input/output vector pairs
termed the training set. The training process involves the iterative adaptation of
the weighted links between neurons to minimize the mean square error between
the desired outputs and the actual ones produced by the net. A number of
techniques may be used to achieve this. First order techniques such as backprop
[22] are often used, though in this work a more optimal method, scaled conjugate
gradient [12], was preferred.

To avoid overfitting the data in the learning process a method of concurrent
descent is used whereby the training data is split into training and validation
sets. Training is halted at the point at which the error of the validation set is
minimized. The performance of the network on unseen data is then assessed
by applying it to a separate test set. To further improve the generalisation
performance of the networks, weight decay was applied to the networks during
training.

The optimal number of hidden nodes to use for each architecture was de-
termined by an exhaustive search between 2 and 32 hidden nodes for each
architecture. This involved training nets with the number of hidden nodes in
this range and then choosing the five architectures providing the lowest valida-
tion error. These five architectures were then placed into a committee network
structure. The committee provides predictions that are weighted linear combi-
nations of the predictions of each of its members. The optimal weightings for
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each of the committee members can be found through a direct ordinary least
squares method applied to the training data [6].

Stochastic Volatility Model

For most financial time series groups of highly volatile observations are inter-
spersed with tranquil periods. Modelling volatility becomes important if mar-
kets are efficient, since the observations p; of a particular financial time series
should just follow a martingale. However, it is then possible to find non-linear
models for the change in variance which might provide some predictive ability.

Changes in the variances y; can be set up as a Gaussian white noise process
¢; which is multiplied by the standard deviation o; given by

yt — Ut€t7 €t ~ II.D(O, 1). (18)

The stochastic volatility model assumes that the variance o; is an unob-
servable process and the volatility at time ¢ given all the information up to
time t — 1 is random. Let the log volatility h; denote a normally distributed
unobservable random variable

h, ~ N(0, 0}) (19)

then
ol = exp h,. (20)

Thus ¢2 can be generated by a linear stochastic process such as a first-order
autoregression AR(1). The stationary AR(1) stochastic volatility model is given

by
3)
Y = €Ei€xXp E ’
ht+1 = ’)"|‘¢ht‘|‘77ta (21)

where 0 < ¢ <1 and
n ~ NID(0,02) (22)

The non-linear equation 21 can be modified to fit in a linear state space model.
Assuming normality for £; it can be shown that loge? has a mean of -1.2704
and a variance of (72/2) [1].
Let
e; = loge? + 1.27, (23)

Squaring the observations and taking logs, the stochastic volatility equation 21
is given is state space form as

logy? = —1.27+h, +¢;,
hiyn = v+ dhy + 1. (24)

Assuming that loge? is normally distributed a quasi-likelihood estimation can
be carried out by applying the Kalman filter to the state space form (equation
24). An in depth discussion of the Kalman filter and its application to stochastic
volatility models can be found in [7] and [8].
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Model Mean square % Accuracy % Accuracy
error all large
FDA MLP 17.97 53.63 58.87
Committee MLP 16.81 54.2 58.24
k-NN 19.86 52.14 51.91

Figure 8 Table giving results for predicting future returns

Model Mean square error
Committee MLP 15.67
Stochasitc volatility 15.94

Figure 9 Table giving results for predicting future variances

4.3 Results

To compare the various prediction models, we again use a set of 20 UK equities.
The prediction models were trained and validated on the first six years of the
data. The prediction errors and percentage accuracies quoted in this section
were then calculated on the unseen test set consisting of the last 5 years of data
(30 December 1989 to 30 December 1994).

Return Prediction

The models used for predicting future returns were a single multi-layer pecep-
tron, a committee network predictor containing 5 multi-layer perceptrons and a
k-nearest neighbour predictor (the optimal k value was found using the training
and validation sets).

All of the models were trained to predict the 7 day ahead return of each
of the 20 securities. Figure 8 shows the relative performances of the predictors
on the unseen data. The performance of the committe network is shown to be
slightly better than the single multi-layer perceptron and considerably better
than the k-nearest neighbour model.

Volatility Prediction

Here, we compare the performance of a committee multi-layer perceptron and
a stochastic volatility model applied to the prediction of future volatilities.
It can be seen from Figure 9 that the committee network and the stochastic
volatility model give similar results, with the prediction error of the network

being slightly smaller. This result is consistent with previous work carried out
examining FX/FX data [21].
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Position Long Flat Short
Equity assets S 0 -S
Monetary assets 0 S 25

Figure 10 Table showing the possible positions that may be held for each secu-
rity

5 Trading Models

5.1

We have shown how to obtain good estimates for the future returns and volatil-
ities of securities using an intelligent feature transformation (Fuzzy Discrimi-
nants Analysis) and committes of neural networks. We now wish to convert
these estimates into a trading strategy. We examine two separate (realistic)
trading strategies and assess the profitability of trading these systems over the
5 years of test data set aside from our original data set.

Simple Speculative Model

We assume we start with a total of 405 in assets. We divide the assets equally
between the 40 securities. At any particular time, we adopt one of the three
positions (long, short or flat) for each security detailed in Figure 10.

When taking a long position we hold .S of our assets in shares for a particular
security and nothing is invested at the risk free rate. For a flat position we hold
nothing of our assets in shares in the equity but invest S of the assets at the
risk free rate. For a short position, we short sell S of our assets in shares and
invest 25 at the risk free rate.

Whenever switching between positions in a particular security, a combined
transaction cost and slippage allowance of 1% of the price of the equity is
subtracted from the total assets.

To trade each security we trained three independent predictors, each pre-
dictor being a committee network containing 5 multi-layer perceptrons. The
committee networks were trained to predict the future returns of the equity
at three different return horizons, namely 7, 14 and 28 days ahead. At time
t we form a trading signal s(¢) that is a weighted combination of the three
predictions i.e.

()= P() (25)

where P;(t) is the return estimated by predictor i. Although the predictors
use different prediction horizons to train the networks, the predictions P;(t) are
always in terms of estimated one day ahead forecasts. The conversion is made
by simply dividing the prediction reponse by the number of days ahead that
the particular predictor is trained on.

We then use the trading signal s(t) at time ¢ and apply the trading rules
shown in Figure 11. If the trading rules call for a change of position we apply
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Current Test Action:

position Go...
Flat if s(t) > a Long
Flat if s(t) < —« Short
Long if s(t) < -0 Flat
Short if s(¢) > 8 Flat

Figure 11 Table showing the trading rules

Model Profitability
Buy & Hold 27.88%
FTSE-100 Index 26.53%
Speculative Trading System 52.01%

Figure 12 Table giving results for profitability of trading strategies over the
test period

transaction costs and re-assess the total assets held in that particular security.

The two trading parameters o and 3 are used as thresholds to decide when
to change position. Suitable values for both parameters are found by optimizing
the profitability of the system applied to the training and validation data. The
actual profitability of the system is then determined by trading it on the test
data.

Results

5.2

Figure 12 shows the overall returns of this trading model applied to the 40
equities. Clearly the trading strategy suggested by the system significantly
outperforms the simple returns of both the individual equities and the FTSE-
100 index itself. What is not clear, however, is the amount of market risk
we expose ourselves to by adopting this methodolgy. In the next section we
consider a trading model that provides high return and attempts to manage
risk.

Portfolio Management Model
We assume we start with a total of S in assets. At any time ¢ we hold w;(t)S
of shares in equity ¢. These weights are constrained such that

40

D wi(t) =1.00 (26)

=1

The risk associated with the portfolio at time ¢ is

V(t) = Z_: Z_: w; (Hw;(t)oi;(2) (27)
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Model Profitability
Buy & Hold 27.88%
FTSE-100 26.53%
Managed portfolio 48.74%

Figure 13 Table giving results for profitability of trading strategies

where 0;;(t) is the covariance of the expected return between securities ¢ and j
at time t. These covariances may be calculated using the committee network
predictions of the volatility (¢?) coupled with estimates of the inter-security re-
turn correlations p;;. The inter-security returns may be estimated using simple
historical averages [19]. The covariances are then simply

05 (t) = pi;os(t)o;(t) (28)
The exzpected return of the portfolio R(t) at time ¢ is simply

40
R(t) =) ri(t) wi(t) (29)
=1
where 7;(t) is the expected return of security ¢ evaluated by the committee
network at time .

During the five year testing period we adopted the following trading strat-
egy. At weekly intervals, the portfolio weightings were adjusted such that the
expected return R(t) was maximised subject to the constraints of Equation 26
and the further constraint that the risk of the portfolio V'(¢) must be no greater
than the risk of the FTSE-100 index at all times. The method used to find the
portfolio weights was a direct method based on the use of Lagrangian Multi-
pliers [16]. We then added further constraints relating to transaction charges
incurred by changing positions. When changing portfolio weightings a round-
trip transaction/slippage allowance of 1 percent was subtracted from the assets.

Results

Figure 13 shows the performance of the managed portfolio over the five test
years. In comparison we show the returns of both the FTSE-100 index and
the return of a simple average portfolio of the 40 equities with constant, equal
weightings (i.e. the average return of the securities in the portfolio). Clearly,
the return of the managed portfolio is superior to both the FTSE-100 index
and the average portfolio. We also found that the volatility of the managed
portfolio was marginally lower than that of the FTSE-100 index.

6 Conclusions

In this paper we have given an overview of a general prediction and trading
methodology covering all aspects from obtaining raw market information to



REFERENCES 20

making actual trading recommendations. We have demonstrated the use of a
novel discriminant analysis technique to reduce the input space for predictors
such as neural networks or k-nearest neighbour models. It was shown that these
input reduction techniques achieved a performance increase in terms of mean
square error and prediction accuracy.

Committees of neural networks were used to make predictions about the
future returns and volatilities of securities using inputs transformed using Fuzzy
Discriminats Analysis. These estimates were then used in two trading models
applied to the management of a portfolio of 40 UK equities. The equities were
managed over a five year period with realistic, somewhat excessive, transaction
and slippage costs introduced into the simulated trading.

In the first trading model we showed that by adopting simple speculative
long, short or flat positions based on the predictions of the committee networks,
we were able to outperfom the return of the FTSE-100 index by just under 100
percent. In the second model, we showed that by using a Markowitz type
methodology we were able to generate a similar amount of excess return and at
the same time manage the risk of the portfolio to be always less than or equal
to that of the FTSE-100 index.
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