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ABSTRACT 

This paper reports some results of an on-going project using neural network modelling and learning 
techniques to search for and decode nonlinear regularities in asset price movements. We focus here on 
the case of IBM common stock daily returns. Having to deal with the salient features of economic data 
highlights the role to be played by statistical inference and requires modifications to standard learning 
techniques which may prove useful in other contexts. 

I. INTRODUCTION 
The value of neural network modelling techniques in performing complicated pattern recognition 

and nonlinear forecasting tasks has now been demonstrated across an impressive spectrum of applica- 
tions. Two particularly interesting recent examples are those of Lapedes and Farber who in [1987a] 
apply neural networks to decoding genetic protein sequences, and in [ 1987bl demonstrate that neural 
networks are capable of decoding deterministic chaos. Given these auccesses, it is natural to ask 
whether such techniques can be of use in extracting nonlinear regularities from economic time series. 
Not surprisingly, especially strong interest attaches to the possibility of decoding previously undetected 
regularities in asset price movements, such as the minute-to-minute or day-to-day fluctuations of com- 
mon stock prices. Such regularities, if found, could be the key to great wealth. 

Against the optimistic hope that neural network methods can unlock the mysteries of the stock 
market is the pessimistic received wisdom (at least among academics) of the "efficient markets 
hypothesis." In its simplest form, this hypothesis asserts that asset prices follow a random walk (e.g. 
Malkiel [1985]). That is, apart from a possible constant expected appreciation (a risk-free return plus 
a premium for holding a risky asset), the movement of an asset's price is completely unpredictable 
from publicly available information such as the price and volume history for the asset itself or that  of 
any other asset. (Note that predictability from publicly unavailable (insider) information is not ruled 
out.) The justification for the absence of predictability is akin to the reason that there are so few $100 
bills lying on the ground. Apart from the fact that they aren't often dropped, they tend to be picked 
up very rapidly. The same is held to be true of predictable profit opportunities in asset markets: they 
are exploited as soon as they arise. In the case of a strongly expected price increase, market partici- 
pants go long (buy), driving up the price to its expected level, thus quickly wiping out the profit 
opportunity which existed only moments ago. Given the human and financial resources devoted to the 
attempt to detect and exploit such opportunities, the efficient markets hypothesis is indeed an attrac- 
tive one. It also appears to be one of the few well documented empirical successes of modern economic 
theory. Numerous studies have found little evidence against the simple efficient markets hypothesis 
just described, although mixed results have been obtained using some of its more sophisticated variants 
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(see e.g. Baillie [1986], Lo and MacKinley [1988], Malkiel [1985] and Shiller 119811). 

Despite the strength of the simple efficient markets hypothesis, it is still only a theory, and any 
theory can be refuted with appropriate evidence. It may be that techniques capable of finding such 
evidence have not yet been applied. Furthermore, the theory is realistically mitigated by bounded 
rationality arguments (Simon 11955, 19821). Such arguments hold that humans are inherently limited 
in their ability to process information, so that efficiency can hold only to the limits of human informa- 
tion processing. If a new technology (such as neural network methods) suddenly becomes available for 
processing available information, then profit opportunities to the possessor of that technology may 
arise. The technology effectively allows creation of a form of inside information. However, the efficient 
markets hypothesis implies that as the new technology becomes publicly available, these advantages 
will dwindle (rapidly) and ultimately disappear. 

In view of the relative novelty of neural network methods and the implications of bounded 
rationality, it is at  least conceivable that previously undetected regularities exist in historical asset 
price data, and that such regularities may yet persist. The purpose of this paper is to illustrate how 
the search for such regularities using neural network methods might proceed, using the case of IBM 
daily common stock returns as an example. The necessity of dealing with the salient features of 
economic time series highlights the role to be played by methods of statistical inference and also 
requires modifications of neural network learning methods which may prove useful in general contexts. 

II. DATA, MODELS, METHODS 
AND IWESULTS 

The target variable of interest in the present study is r,, the one day rate of return to holding 
IBM common stock on day t ,  as reported in the Center for Research in Security Price's security price 
data  file ("the CRSP file"). The one day return is defined as r, = ( p t  - pt-l + d , ) / p t - , ,  where p, is the 
closing price on day t and d, is the dividend paid on day t .  The one-day return r, is also adjusted for 
stock splits if any. Of the available 5000 days of returns data, we select a sample of 1000 days for 
training purposes, together with samples of 500 days before and after the training period which we use 
for evaluating whatever knowledge our networks have acquired. The training sample covers trading 
days during the period 1974:n through 1978:I. The evaluation periods cover 1972:II through 1974:I 
and 1978:II through 1980:I. The training set is depicted in Figure 1. 

Stated formally, the simple efficient markets hypothesis asserts that E(r, I It - , )  = r', where 
I I,,,) denotes the conditional expectation of r, given publicly available information at  time t-1, 
(formally I,+ is the 0-field generated by publicly available information), and r' is a constant 

(which may be unknown) consisting of the risk free return plus a risk premium. Because I,-1 includes 
the previous IBM price history, the force of the simple efficient markets hypothesis is that this history 
is of no use in forecasting rt. 

In the economics literature, a standard way of testing this form of the efficient markets 
hypothesis begins by embedding it as a special case in a linear autoregressive model for asset returns of 
the form 

rt - U, + wlrl-l + * - - + wprl-p + q , t = 1 ,  2 ,  . . . , 

where E = ( w, , tu1 , . . . , wp)  ' is an unknown column vector of weights, p is a positive integer deter- 
mining the order of the autoregression, and €, is a stochastic error assumed to be such that 

= wp = 0. Thus, any 
empirical evidence that w1 # 0 or w2 # 0 ... or wp # 0 is evidence against the efficient markets 

E ( € ,  I I,-,) = 0. 
The efficient markets hypothesis implies the restriction that wl = 
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hypothesis. On the other hand, empirical evidence that U), = * - = wp = 0, while not refuting the 
efficient markets hypothesis, does not confirm it; numerous instances of deterministic nonlinear 
processes with no linear structure whatsoever are now well known (e.g. Sakai and Tokumaru [1980]; see 
also Eckmann and Ruelle [1985]). The finding that U), = - * - = wp = 0 is consistent with either the 
efficient markets hypothesis or the presence of linearly undetectable nonlinear regularities. 

An equivalent implication of the simple efficient markets hypothesis that will primarily concern 
us here is that war r, = war z,, where war denotes the variance of the indicated random variable. 
Equivalently, R1 E 1 - war z,/wor r, = 0 under the simple efficient market hypothesis. Thus, empiri- 
cal evidence that RZ # 0 is evidence against the simple efficient markets hypothesis, while empirical 
evidence that RZ = 0 is consistent with either the efficient markets hypothesis or the existence of non- 
linear structure. 

Thus, as a first step, we examine the empirical evidence against the simple efficient markets 
hypothesis using the linear model posited above. The linear autoregressive model of order p (AR(p) 
model) corresponds to a very simple two layer linear feedforward network. Given inputs 
r , - , , .  . . , r,-p, the network output is given as ;, = 9, t 9, r,-, + * * * + d, r,-,,, where dol 
4,, . . . , GP are the network weights arrived at  by a suitable learning procedure. Our interest then 
attaches to an empirical estimate of Rz,  computed in the standard way (e.g. Theil [1971, p. 1761) as 
ffl  EE 1 - wo*r c,/uo*r r,, where viir c, r,, 
and n is the number of training observations. Here n = 1000. 

These quantities are readily determined once we ha;e arrived at suitable values for the network 
weights. A variety of learning procedures is available. A common learning method for linear networks 
is the delta method 

E,+, = E, - 7 3' (r, - 3 E,) 

n-l E;-, (r, - f t ) l ,  uhr r, n-l E;-,(r,-f)', f 3 n-l 

t = 1 , . . . , 1000 

where E, is the ( p t l )  x 1 weight vector after presentation of t-1 target/input pairs, 7 is the learning 
rate, and E, is the 1 x (p + 1) vector of inputs E, = (1, r,-, , . . . , r,-,). A major defect of this 
method is that because of the constant learning rate and the presence of a random component z f  in rtI 
this method will never converge to a useful set of weight values, but is doomed to wander eternally in 
the netherworld of suboptimality. 

A theoretical solution to this problem lies in allowing 7 to depend on t .  As shown by White 
[1987a, b] an optimal choice is 'If a t-'. Nevertheless, this method yields very slow convergence. A 
very satisfactory computational solution is to dispense with recursive learning methods altogether, and 
simply apply the method of ordinary least squares (OLS). This gives weights by solving the problem 

n 
min (r ,  - IU)~ . 

E I = ,  

The solution is given analytically as 

- w = ( X ' X ) - l  X'r , 

where X is the 1000 x ( p + l )  matrix with rows zt, r is the 1000 x 1 vector with elements r,, and the -1 
superscript denotes matrix inversion. 

Network learning by OLS is unlikely as a biological mechanism; however, our interest is not on 
learning per se, but on the results of learning. We are interested in the performance of "mature" net- 
works. Furthermore, White [1987a, b] proves that as n + 00 both OLS and the delta method with 
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q ,  a t-' converge stochastically to identical limits. Thus, nothing is lost and much computational 
effort is saved by using OLS. 

When OLS is applied to the linear network with p = 5, we obtain 8' = .0079. By construction, 
8' must lie between zero and one. The fact that 8' is so low suggests little evidence against the sim- 
ple efficient markets hypothesis. In fact, under some statistical regularity conditions, n8' is distri- 
buted approximately as x: when w1 = * - - = wp = 0. In our case, n&' = 7.9, so we have evidence 
against wl = - * * = wp = 0 at less than the 10% level, which is below usual levels considered to be 
statistically significant. The plot of ?, also reveals the virtual absence of any relation between ?, and 
r,. (See Figure 2.) 

Thus, standard methods yield standard conclusions, although nonlinear regularities are not ruled 
out. T o  investigate the possibility that neural network methods can detect nonlinear regularities 
inconsistent with the simple efficient markets hypothesis, we trained a three layer feedforward network 
with the same five inputs and five hidden units over the same training period. The choice of five hid- 
den units is not entirely ad hoc, as it represents a compromise between the necessity to include enough 
hidden units so that a t  least simple nonlinear regularities can be detected by the network (Lapedes and 
Farber [1987b] detected the deterministic chaos of the logistic map using five hidden units with tanh 
squashing functions; we use logistic squashes, but performance in that case a t  least is comparable, even 
with only three or even two hidden units) and the necessity to avoid including so many hidden units 
that the network is capable of "memorizing" the entire training sequence. I t  is our view that this 
latter requirement is extremely important if one wishes to obtain a network which has any hope a t  all 
of being able to generalize adequately in an environment in which the output is not some exact func- 
tion of the input, but exhibits random variation around some average value determined by the inputs. 
Recent results in the statistics literature for the method of sieves (e.g. Grenander [198l], Geman and 
Hwang [1982]) suggest that with a fixed number of inputs and outputs, the number of hidden units 
should grow only as some small power of the number of training observations. Over-elaborate net- 
works are capable of data-mining as enthusiastically as any young graduate student. 

The network architecture used in the present exercise is the standard single hidden layer architec- 
ture, with inputs 2, passed to a hidden layer (with full interconnections) and then with hidden layer 
activations passed to the output unit. Our analysis was conducted with and without a logistic squash 
at the output; results were comparable, so we discuss the results without an output squash. 

The output of this network is given by 

where ( B o  :B1 Pa) are a bias and weights from the hidden units to the output and i~ (il , . . . , x6) are weights from the input units, both after a suitable training procedure; and is the 
logistic squashing function. The function f summarizes the dependence of the output on the input E, 
and the vector of all connection strengths, i. 

As with the preceding linear network, the efficient markets hypothesis implies that 
8' 1 - u6r Z,/u6r r, should be approximately zero, where now u6r Z, E n-l C;-l(r,-?,)2 and 
v i r  r, = n-' x;'l(r,-?)z as before. This result will be associated with values for a, , . . . , B, close to 
zero, and random values for Gj. A value for 8' close to zero will reflect the inability of the network to 
extract nonlinear regularities from the training set. 

As with the linear network, a variety of training procedures is available. One popular method is 
the method of back propagation (Parker 119821, Rumelhart et. al. [1986]). In our notation, it can be 

. . . 
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represented as 

where !, is the vector of all connection strengths after t-1 training observations have been presented, 
q ,  is the learning rate (now explicitly dependent on t )  ~ 7 (  represents the gradient with respect to f (a 
row vector) and the other notation is as before. 

Back propagation shares the drawbacks of the delta method previously discussed. With q ,  a con- 
stant, it fails to converge, while with q ,  a t-', it converges (in theory) to a local minimum. Unfor- 
tunately, the random component of r, renders convergence extremely difficult to obtain in practice. In 
fact, running on an IBM R T  a t  well over 4 mips, convergence was not achieved after 56 hours of com- 
putation. 

Rather quick convergence was obtained using a variant of the method of nonlinear least squares 
described in White [1988]. The method of nonlinear least squares (NLS) uses standard iterative 
numerical methods such as Newton-Raphson and Davidson-Fletcher-Powell (see e.g. Dennia [198S]) to 
solve the problem 

I) 

min c (r, - !(E, , g2 - 
1. 1=1 

Under general condition, both NLS and back-propagation with q ,  a t-' convergence stochastically to 
the same limit, M shown by White [1987a, b]. 

Our nonlinear least squares method yields connection strengths 8 which imply A' - .175. At 
least superficially, this is a surprisingly good fit, apparently inconsistent with the efficient markets 
hypothesis and consistent with the presence of nonlinear regularities. Furthermore, the plot of fitted 
(F,) values shows some very impressive hits. (See Figure 5.) 

IfJor the moment we imagine that i is given, and not the result of an optimization procedure, 
then nRZ = 175 is x i  under the simple efficient markets hypothesis, a highly significant result by any 
standards. Unfortunately, 5 is the result of an optimization procedure, not given a priori. For this 
reason nRz is in fact not ~3 indeed, its distribution is a complicated non-standard distribution. The 
present situation is similar to that considered by Davies [1977, 19871 in which certain parameters (2 
here) are not identified under the null hypothesis. A theory applicable in the present context has not 
yet been developed and constitutes an important area for further research. 

Given the unknown distribution for n a z ,  we must be cautious in claiming that the simple 
efficient markets hypothesis has been statistically refuted. We need further evidence. One way to 
obtain this evidence is to conduct out-of-sample forecasting experiments. Under the efficient markets 
hypothesis, the out-of-sample correlation between r, and F, (or t,), where F,(;t) is computed using 
weights determined during the training (sample) period and inputs from the evaluation (out-of-sample) 
period, should be close to zero. If, contrary to the simple efficient markets hypothesis, our three layer 
network has detected nonlinear structure, we should observe significant positive correlation between r, 
and F,. 

This exercise was carried out for a post sample period of 500 days, and a pre-sample period of 
500 days. For the post-sample period we observe a correlation of -.Of3993 for the pre-sample period, it 
is .0751 (for comparison, the linear model gives post-sample correlation of -.207 and pre-sample corre- 
lation of .0996). Such results do not constitute convincing statistical evidence against the efficient 
markets hypothesis. The in-sample (training period) results are now seen to be over-optimistic, being 
either the result of over-fitting (random fluctuations recognized incorrectly as nonlinearities) or of 
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learning evanescent features (features which are indeed present during the training period, but which 
subsequently disappear). In either case the implication is the same: the present neural network is not 
a money machine. 

111. CONCLUDING REMARKS 
Although some might be disappointed by the failure of the simple network considered here to 

find evidence against the simple efficient markets hypothesis, the present exercise suggests some valu- 
able insights: (1) finding evidence against efficient markets with such simple networks is not going to 
be easy; (2) even simple networks are capable of misleadingly overfitting an asset price series with as 
many as 1,000 observations; (S) on the positive side, such simple networks are capable of extremely 
rich dynamic behavior, as evidenced by time-series plots of ?, (Figure 3).  

The present exercise yields practical benefits by fostering the development of computationally 
efficient methods for obtaining mature networks (White [1988]). It also highlights the role to be 
played by statistical inference in evaluating the performance of neural networ! models, and in fact sug- 
gests some interesting new statistical problems (finding the distribution of nRZ). Solution of the latter 
problem will yield statistical methods for deciding on the inclusion or exclusion of additional hidden 
units to a given network. 

Of course, the scope of the present exercise is very limited; indeed, it is intended primarily as a 
vehicle for presenting the relevant issues in a relatively uncomplicated setting, and for illustrating 
relevant approaches. Expanding the scope of the search” for evidence against the efficient markets 
hypothesis is a high priority. This can be done by elaborating the network to allow additional inputs 
(e.g., volume, other stock prices and volume, leading indicators, macroeconomic data, etc.) and by per- 
mitting recurrent connections of the sort discussed by Jordan [1980]. Any of these elaborations must 
be supported with massive infusions of data for the training period: the more connections, the greater 
the danger of overfitting. There may also be useful insights gained by permitting additional network 
outputs, for example, returns over several different horizons (two day, three day, etc.) or prices of other 
assets over several different horizons, as well as by using within rather than between day data. 

Another important limitation of the present exercise is that the optimization methods used here 
are essentially local. Although the final weight values were determined as giving the best performance 
over a range of different starting values for our iterations, there is no guarantee that a global m w -  
imum was found. A global optimization method such a.s simulated annealing or the genetic algorithm 
would be preferable. 

Finally, it is extremely important to point out that while the method of least squares 
(equivalently, back-propagation) is adequate for testing the efficient markets hypothesis, i t  is not 
necessarily the method that one should use if interest attaches to building a network for market trad- 
ing purposes. Such networks should be evaluated and trained using profit and loss in dollars from gen- 
erated trades, not squared forecast error. Learning methods for this criterion are under development 
by the author. 
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