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Neural Network Ensembles 
LARS KAI HANSEN AND PETER SALAMON 

Abstract-We propose several means for improving the performance 
and training of neural networks for classification. We use crossvali- 
dation as a tool for optimizing network parameters and architecture. 
We show further that the remaining residual “generalization” error 
can be reduced by invoking ensembles of similar networks. 

Zndex Terms-Crossvalidation, fault tolerant computing, neural net- 
works, N-version programming. 

I. INTRODUCTION 
ECENT schemes for training neural networks involv- R ing hidden neurons have caused a resurgence of in- 

terest in nonalgorithmic supervised learning. A super- 
vised learning scheme is implemented using a database 
which consists of a set of input patterns (a sample from 
the set of possible inputs) together with the corresponding 
targets (classifications). The objective of the training is to 
let the trainee extract relevant information from the da- 
tabase in order to classify future input patterns: in other 
words to generalize [ 11. 

The present paper advocates a number of procedures for 
analyzing and improving classification by networks. The 
procedures that we introduce require very little specifics 
of the neural network involved; we may think of the net- 
work merely as a pattern recognition device with tunable 
parameters which has been trained under supervision, i.e., 
which has been shown a given set of input-output pairs. 
For most architectures, these tunable parameters take the 
form of the weights w .  This includes feed-forward nets 
[2], Boltzmann machines [3], Madalines [4], recurrent 
nets [ 5 ] ,  etc. 

As our principal device for analyzing performance, we 
apply the concept of crossvalidation to neural networks. 
The basic idea is to use only a portion of the database in 
training the network and to use the rest of the database in 
assessing the capacity of the network to generalize. Such 
a procedure is in fact well-known within statistical pattern 
recognition; we argue below that it is also an important 
procedure for neural networks. Once we can assess the 
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performance of the network, we can optimize such per- 
formance by varying network characteristics and architec- 
ture. 

A residual error will typically remain even after opti- 
mizing all available network characteristics [6]. To fur- 
ther reduce this error we propose to use a device from 
fault tolerant computing [7]. We run not a single network 
but an ensemble of networks, each of which have been 
trained on the same database. The basic idea is to classify 
a given input pattern by obtaining a classification from 
each copy of the network and then using a consensus 
scheme to decide the collective classification by vote. 

11. CROSSVALIDATION FOR NETWORK OPTIMIZATION 
For supervised learning we employ a database as de- 

scribed above including a representative sample of the set 
of possible input patterns i and the corresponding output 
patterns o b .  In general the network is supposed to deduce 
a “noisy rule” from the database. This rule is stored in 
the particular matrix of weights w which is selected so as 
to minimize the number of errors in the assignments i p  --f 
&(io) made by the network on a subset of the inputs. 
Hence the input-output relation can be encoded by a well 
trained w ,  i.e., by a significantly lower number of bits 
than were contained in the database used in its training. 
The extra bits in the database represent redundancy and 
noise which we try to avoid modeling. From this per- 
spective, the choice of a network architecture amounts to 
a choice of parametrization for this input-output relation. 
Crossvalidation is the standard tool in deciding between 
alternative choices of parametrization for a data set by 
statistical methods [8]. 

By contrast, the standard procedure for training a neural 
network involves training on the complete database by 
minimizing the accumulated misclassification of inputs in 
the dataset 121. Since the overall goal is not to minimize 
errors on the dataset but rather to minimize misclassifi- 
cation on a much larger set of conceivable inputs, cross- 
validation gives a much better measure of expected ability 
to generalize. 

As an example, consider choosing the number of hid- 
den neurons in the network. Statistically this can be in- 
terpreted as the size of the parameter set used to model 
the data. As measured by the ability to generalize there is 
a limit to the desired size of any network architecture. 
This follows from the basic observation that it might not 
be optimal to train a neural network to perfection on a 
given finite database because of noise contamination. But 
then exactly how much should it be trained in order to 
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produce the best generalizations? An unbiased estimate 
can be obtained by bipartitioning the database into spe- 
cific training and test sets. Overtraining will then show up 
as poorer performance on the test set, i.e., when cross- 
validating. 

The method is not limited to choosing the number of 
neurons. Crossvalidation also allows comparing different 
architectures, i.e., which neurons are hooked to which 
others. For example, one can use it to compare the per- 
formance of one and two layers of hidden neurons in a 
feed forward network. One can also use it to select the 
number of copies of the network used in parallel. This is 
the topic of the next section. 

111. ENSEMBLES OF NEURAL NETWORKS 
Standard practice [2], [6], [9], [lo], [ 111 dictates that 

we perform some trial tunings to find an acceptable ar- 
chitecture and tuning for the network and then trust all 
future classifications to the best network we find. It turns 
out however that it is preferable to keep the complete set 
of networks (or at least a screened subset) and run them 
all with an appropriate collective decision strategy. In 
analogy with physical theory, we will refer to the set of 
neural networks used as an ensemble [l]. 

Ensembles are desirable due to the basic fact that se- 
lection of the weights w is an optimization problem with 
many local minima. All global optimization methods in 
the face of many local minima yield “optimal” parame- 
ters ( w )  which differ greatly from one run of the algo- 
rithm to the next, i.e., which show a great deal of ran- 
domness stemming from different initial points ( W O )  and 
sequencing of the training examples. This randomness 
tends to differentiate the errors of the networks, so that 
the networks will be making errors on different subsets of 
the input space. 

The networks will differ in the values of the weights w 
for several reasons discussed in the following section. 
These different weights correspond to different ways of 
forming generalizations about the patterns inherent in the 
training set. As each network makes generalization errors 
on different subsets of the input space, we shall argue that 
the collective decision produced by the ensemble is less 
likely to be in error than the decision made by any of the 
individual networks. Our argument is further supported 
by our experiments. The conclusion is that the ensemble 
can be far less fallible than any one network. 

This is dramatically illustrated in Fig. 1 which shows 
three networks trained to identify points in the first and 
third quadrants. While none of the three individual net- 
works have correctly learned the rule, their majority vote 
does remarkably well. The experiment is discussed fur- 
ther in the experimental section below. 

The performance in Fig. 1 is unusual. As shown by 
Eckhardt and Lee [7], using collective performance for 
fault-tolerant applications by either hard or software does 
not necessarily improve the reliability of the output ob- 
tained. Central to this issue is the extent to which errors 
tend to coincide. In fact, for independently trained neural 

10.000 showings 

NN ‘I  NN ‘2 NN ‘3 MaJOrlly m m  
20,000 showings 

NN - 1  NN ‘2 NN ‘3 Majority 

30,000 showlngs 

NN ‘I  NN ‘2 NN ‘3 Ma j o n  ty 

LlMb 
Fig. 1. Three networks trained to identify inputs ( x ,  y )  as belonging to the 

first and third quadrants (black) or the second and fourth quadrants 
(white). The figure shows the classification by each of the networks and 
their majority decisions. 

networks, the extent of coincidence is likely to be low. 
We begin our analysis of ensemble performance with a 
discussion of why this is the case. 

IV. THE PROBLEM OF MANY LOCAL MINIMA 
A. How Local Minima Differ 

The multiple minima structure of the objective function 
used in tuning the weights w follows from the symmetries 
of the networks. While all symmetry-related nets produce 
identical output, the system is likely to end up in “mixed” 
configurations that resemble different symmetry related 
solutions in different regions. It is well known from the 
analysis of disordered materials [ 121 that multiple discrete 
symmetries lead to frustration and a combinatorial explo- 
sion of local minima. 

To illustrate this fact, we specify a particular feed for- 
ward network of the type for which Rummelhart et al .  
devised the Back propagation method. We consider a three 
layer network combined from an input slab, a layer of 
hidden neurons and an output slap as depicted in Fig. 2. 
The computing neurons perform calculations of the form 

where s; is a neuron in the layer preceding sp and g ( * ) is 
the sigmoid function as exemplified in Fig. 2. We have 
represented the tunable thresholds by additional fixed- 
state neurons in the preceding slabs. 

With any form of the sigmoid function there is a dis- 
crete symmetry (i.e., a transformation leaving the output 
invariant) related to a simple permutation of indexes 
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Fig. 2. A Rumelhardt architecture is shown using 20 input neurons, a sin- 
gle layer of 10 hidden neurons, and an output layer of 10 neurons. This 
architecture is employed for the experiments on classification of random 
patterns described below. The inset shows the sigmoid function used as 
the nonlinearity in the neurons. 

among the hidden neurons. As the typical sigmoid has the 
two properties of antisymmetry and saturation for large 
arguments, additional symmetries follow. From the for- 
mer property arrives a discrete symmetry by inverting the 
state of a given hidden neuron and changing signs on the 
corresponding w’s. The latter leads to an approximate 
continuous symmetry. Due to the saturation we can mul- 
tiply the weights approaching a given neuron by an arbi- 
trary scale factor without significantly changing the out- 
put. This approximate continuous symmetry indicates that 
the solution space has the form of a family of “cones. ’ ’ 

B. Diferent Search Methods and Objectives 
Despite the fact that our ultimate objective function is 

the ability to generalize, the objective for the tuning phase 
of the project is rather the sum of squared deviations be- 
tween the outputs obtained for the training set and the 
outputs produced by the network. Either objective suffers 
from the problem of many local minima. 

Tuning algorithms will end up at different w’s follow- 
ing independent runs for many reasons which may include 
different starting weights, different sequences of the train- 
ing samples, different partitionings of the database used 
during training, or different random numbers generated 
during a stochastic search algorithm. Finding good algo- 
rithms for solving global optimization problems in the face 
of many local minima is a highly active field without firm 
recipes. We note that the conventional implementation of 
“gradient descent” for neural nets [ 111 contains a signif- 
icant component of “self-annealing. ” By this we mean 
that it allows occasional “uphill” moves characteristic of 
methods like simulated annealing [ 131 rather than greedy 
algorithms like steepest descent. It is customary to update 
the weights using only an estimate of the local gradient 
of the error function obtained from one or at most a few 
input samples of the database. The noise-level of this es- 
timate can be suppressed in part by “momentum” 
smoothing parameters [6]. The approach resembles a dy- 
namical system interacting with an external stochastic 
source (a heatbath) simulated with molecular dynamics 
1141. 

An ensemble of independently trained networks can 
make a collective classification several ways. The most 
powerful voting rule appears to be plurality in which the 
collective decision is the classification reached by more 
networks than any other. Simpler to analyze is the major- 
i t y  voting rule which chooses the classification made by 
more than half the networks. When there is no agreement 
among more than half the networks, the result is consid- 
ered an error. Note that a correct decision by majority is 
perforce a correct decision by plurality. 

A .  Independent Errors 
The simplest model of network performance is to as- 

sume that all neural networks arrive at the correct classi- 
fication with a certain likelihood 1 - p and that they make 
independent errors. The chances of seeing exactly k errors 
among N copies of the network is then 

(:)p*(1 - P ) N - k  

which gives the following likelihood of the majority rule 
being in error 

( 3 )  

It can be shown by induction for odd N (or separately for 
even N ) that provided p < 1 / 2 ,  (3) is monotonically de- 
creasing in N .  In other words, if each network can get the 
right answer more than half the time, and if network re- 
sponses are independent, then the more networks used, 
the less the likelihood of an error by a majority decision 
rule. In the limit of infinite N ,  the ensemble error rate 
goes to zero. The conclusion is of course reversed for p 

To find the probability that a plurality decision makes 
an error is considerably more complicated. In particular, 
this needs some assumptions about the type of errors 
made, i.e., when two networks both make an error in 
classification, how likely are they to choose the same in- 
correct classification. This is difficult to predict and is 
likely to be rather problem dependent. As an illustration 
consider the possibility that classifications are difficult be- 
cause pairs of inputs bear a strong resemblance to their 
partners. In this case there are effectively only two choices 
at each input and plurality becomes the same as majority. 
We proceed by adopting what we will refer to as the as- 
sumption of ‘‘random errors. ” Specifically, we assume 
that when an error in classification occurs, the incorrectly 
identified output is chosen with equal likelihood from 
among the M - 1 remaining possible classifications. The 
exact value of M appropriate to a certain analysis then 
becomes a parameter which we call the effective “degree 
of confusion. ” It can reveal important information about 
the structure of a problem. Below we estimate this param- 

> 1/2. 

eter Meffective. 
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Using the random errors assumption, we calculate the 
probability of making an error with plurality voting by N 
networks choosing between M outputs. Let ni be the num- 
ber of networks identifying a given input with output pat- 
tern i, i = 1, * * * M. Without loss of generality we as- 
sume that the correct pattern for the identification is i = 
1 .  For a given value of n,  , an error occurs if and only if 
at least one of the ni, i > 1 ,  is at least as large as nl .  The 
probability of an error with plurality consensus then be- 
comes 

N c Prob [al](  1 - Prob[(Max ni) < nlln~]). 
ni = O  i >  1 

(4) 

Letting p again denote the probability that any one of the 
N networks makes an error we find 

The other probability in (4) is harder to compute. Given 
the value of n,,  we are faced with making N - n,  choices 
from among M - 1 equally likely alternatives. The re- 
quired probability asks for the likelihood that the maxi- 
mum of the frequency of the most commonly chosen pat- 
tern is less than nl . This probability can be obtained using 
the closed form summability of certain generating func- 
tions [ 151. To use this summability one maps the problem 
into the equivalent one of counting the number of func- 
tions from a set with M - 1 elements to the set { 1 ,  
n,  - 1 } such that the sum of the values taken on by this 
function is exactly N - n,.  Omitting the details, the cal- 
culation gives 

Either of the above models predicts performance far su- 
perior to the performance we see experimentally. This is 
due to the fact that the behavior of the networks is in fact 
not independent, 

B. A Model Incorporating Input Dificulty 
The dominant cause for dependence among errors in 

classification is the fact that a specific input has an asso- 
ciated difficulty independent of which network is doing 
the classification. For the example in Fig. 1, points near 
the origin are harder to classify correctly than points near 
the comers of the square. On inputs which are difficult to 
classify, all of the neural networks have a lower prob- 
ability of coming up with the right output. Eckhardt and 
Lee [7] have proposed a model incorporating such input 
specific difficulty within a study of N-version program- 
ming. Their model as applied to neural nets is briefly as 
follows. For each possible input a, we define 8 ( a )  to be 
the fraction of (an infinite) ensemble of neural networks 
trained according to a fixed algorithm (or distribution of 
algorithms) which fails to correctly classify input a. Then 
the performance of an ensemble of N networks on this 
input under majority voting becomes 

(9) 

We now define the classification difficulty distribution p. 
By p we shall mean a measure on the set of 8 values so 
that p ( 0 )  d8 is the fraction of inputs a on which a fraction 
between 8 and 8 + de of the networks make an erroneous 
classification. Then the predicted performance by major- 

) k M - 1  N - n l ( I + k ) + M - 2  
k = O  ( k )( N -  n l ( l  + k )  

Prob [(Max ni) < n, 1 n , ]  = 
i >  1 

for nl 2 1 + ( N  - l ) / M .  For smaller n l  we find 
ity rule among N networks is 

Prob [(Max ni) < nl In,] = 0. ( 7 )  
i >  1 

Substitution of (3, (6), and (7)  into (4) yields the prob- 
ability Pplurality of failure by an N network ensemble with 
random using plurality voting among patterns At this point in their development of the theory, Eckhardt 

and Lee state that this majority rule need not perform bet- 
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ter than an individual network. Since the integrand is 
smaller for N networks than for 1 provided 8 < 1 / 2 ,  this 
can only happen when the majority of the inputs have high 
8 values, i.e., when p has significant mass in the interval 
[ 1 / 2 ,  1 1. For neural networks, this will happen only if 
the input distribution during operation of the neural net- 
work is very different from the input distribution during 
training or if the networks are very poorly trained, i.e., if 
their performance on the training set identifies the correct 
outputs less than 1 / 2  the time. For N -, 03, the error rate 
tends to SA.5 p ( 0 )  de. 

The performance of an ensemble using plurality with 
an effective degree of confusion M and an input difficulty 
distribution p is computed analogously to (10). 

tribution. This gives p* which is of the Boltzmann form 
e -he, 

p ( e i )  = ~ (14) e ‘ 

j 

This estimate is useful when experimental p’s are un- 
available. A value of X can be selected so (13) holds and 
then formulas (10) and (1 1) above can be used to predict 
ensemble performance. 

Note that even these models do not fully treat the de- 
pendence between neural networks. While this model 
gives a good qualitative fit to observed data, the real mea- 
sure of ensemble performance must come from crossval- 
idation. 

r C. A Model Incorporating Network Projiciency 
We now model a different source of correlation in the (11) 

These models are not useful without some knowledge 
of the distribution p of classification difficulties. This 
quantity is observable as a discrete distribution over the 0 
values 0, 1 / K ,  2/K, * ( K  - l ) / K ,  1, where K i s  the 
number of networks in the ensemble used to observe p .  
For each input CY, the estimate of O(a) is the fraction of 
the K networks which classify CY incorrectly. The estimate 
of p ( i / K  ) = pi is then the fraction of questions in a large 
sample which result in i of the K networks making erro- 
neous classifications. 

One can make a useful guess of the distribution p using 
maximum entropy techniques. We note that for an infifiite 
ensemble, the average error rate j? for all networks trained 
according to the given regimen must be the mean Sop ( e )  
de. Since this average error rate is easily (and standardly) 
measured for each network in the ensemble, we can 
choose p to be the distribution p* which is the most ran- 
dom distribution on [0, 11 with mean p in the sense that 
it maximizes the integral j p  ( e )  In p ( e )  de. 

To understand the meaning of most random in the pres- 
ent context, consider again the discrete case where 8 can 
take on only the values i / K .  Consider the performance of 
K copies of the system on L classifications. We have got 
to distribute a certain total number T = pKL of errors 
among the networks. Each such distribution of errors will 
result in a corresponding empirical pi which is the number 
of problems on which i of the K networks erred. The num- 

performance of the networks : their individual proficiency. 
An accurate model of performance with individual profi- 
ciencies can provide a criterion for screening the networks 
for membership in the ensemble. As an illustration, con- 
sider development of a neural network application which 
resulted in one copy which achieves an error rate of 0.1 
and two other copies that each have an error rate of 0.2. 
Will the ensemble of three networks make fewer errors 
than the best network alone? 

The predictive power of the present models, can only 
be relied on for qualitative information. The answer, 
however, comes out affirmative even when the other two 
networks are much less well trained. In the present paper 
we examine only the simplest case: independent perfor- 
mance using three networks. Qualitatively this case al- 
ready shows the important features. Using only three net- 
works avoids the complication of an unknown M since the 
three network consensus makes an error if and only if at 
least two of the participating networks make an error re- 
gardless of whether their erroneous identifications coin- 
cide. 

Consider three networks with proficiencies p l ,  p 2 ,  and 
p3.  Without loss of generality we take the minimum error 
to be p l .  The condition that the consensus error rate be 
less than the best individual error rate is 

P1 > PlP2P3 + P l P 2 0  - P 3 )  

+ PlP3(1 - P2)  + P2Pd1 - P d .  (15) ber of ways we can achieve a certain set of values for the 
pi’s is given by 

II For given p l ,  this represents the region in the first quad- 
U. 

( 1 2 )  rant of the p2, p3 plane below a rectangular hyperbola 
which crosses the axes at ( 0 ,  1 )  and (1,  0 ) ,  respectively. 
Thus one of the networks can be quite poor provided the 
other is sufficiently good. To get an idea how good they 
have to be, consider the casep2 = p3  = p .  Expanding the 
criterion to second order in p 1  this becomes 

rI( 1 0  

K K c pi = 1 and c ipi = PK. 

with 

( 13) 
i = l  i =  1 

Maximizing the entropy then corresponds to maximizing 
this number of ways of realizing p with a given mean 

3 
P < 6 - P1 + 2 P Y 2  - 2P: + O M ) .  (16) 

error rate p. It is usually justified by assuming that all p’s 
consistent with the mean are equally likely and then in- 
volving the sharply peaked nature of the multinomial dis- 

For the illustration above with p1 = 0.1 and p = 0.2 we 
see that it does pay to use consensus classification. 
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VI. EXPERIMENTS 

Below we illustrate the above ideas on two examples. 
Both examples involve a known rule and hence constitute 
toy problems. This made it possible to mimic the cross- 
validation by generating any desired number of test pat- 
terns cheaply. This made good statistics possible for our 
experiments. For real examples this function can be per- 
formed, albeit to lesser accuracy, using crossvalidation. 

Both of our experiments employ a simple feed forward 
architecture which we tuned by backpropagation [2]. Val- 
idation schemes were used to measure the effects of en- 
semble size and of network architecture. 

Backpropagation being a standard technique, we pre- 
sent only the details needed to make our experiments re- 
producible. We have found it useful to allow for some 
flexibility in the choice of the gradient descent parameter 
r ] .  For the first five showings of the training set, we used 
r]  = r]  / 100 to absorb the strong gradients in the transient 
phase. In addition we allow for different 7’s for the dif- 
ferent components of the w-gradient; we have used r]’s 
specific to weights and thresholds as described below. 

The iteration scheme indicated above has been initial- 
ized with random w’s as well as random “velocities”: 

- 

with rand  r ’  uniform in [ - 1 ,  I ] .  
We have enforced a vote from each network by letting 

the output neuron with the maximum output define the 
class. 

A .  Example I :  The Generalized XOR 

One of the classical problems which cannot be solved 
without “hidden” neurons is the XOR (or Parity) prob- 
lem. In its standard form it calls for reproducing the truth- 
table of the logical function XOR. With two binary input 
neurons representing the operands and one output neuron 
representing the value, it can be shown that at least two 
hidden neurons are needed within the Feed-forward ar- 
chitecture of Fig. 2 [2]. We have generalized the problem 
by accepting continuously valued input and letting the 
classification be: o ( x ,  y )  = sign ( x  * y ) .  The example is 
included for its visual impact. Fig. 1 shows the perfor- 
mance of three independently trained Feed-forward net- 
works. We have included six hidden neurons in each net- 
work. Each square represents a scan of the classifications 
within the domain, [ -0.5, 0.51 X [ -0.5, 0.51, after 
presentation of 10 000 uniformly chosen random points. 
For the test set, the unit square has been discretized in a 
15 by 15 lattice and the classification of each cell center 
has been calculated using the individual nets as well as 
the majority rule. 

The parameter values used for training were: 9 
(weights) = 0.05, r]  (thresholds) = 0.01, and momentum 
parameter = 0.99. 

B. Example 2: A Model Problem 
As our second and more realistic example we have cho- 

sen the classification of a number of regions in the 20- 
dimensional hypercube. The regions are defined by 10 
“pure” patterns chosen at random. Each pure pattern 
(comer of the hypercube) defines a class which is desig- 
nated 1-10. Samples from each class are generated by 
perturbing the corresponding pure pattern by bit-inversion 
with specified probability p. The class-coding utilizes the 
standard form [6] having ten output neurons and letting 
output-pattern j be defined by neuron j being “on” ( + 1 ) 
and the rest “off’ ( - 1).  The training set was created 
with p =  0.1 while we use test sets with p: 0.0, 0.05, 0.1, 
0.15 and 0.2. This models extrapolation as well as inter- 
polation. We note that regions used in test sets with p = 
0.20, are expected to have a significant overlap as two 
random pure patterns differ by - 10 bits while there is 
about 20% probability that 6 or more bits are changed. 

We have performed training sessions in two modes, in 
the first mode we trained each network on the same train- 
ing set of 100 examples (10 from each region), while in 
the second mode we used independently generated sets of 
100 examples. 

The parameter values used for training were: r ]  

(weights) = 0.05, r ]  (hidden thresholds) = 0.01, r]  (out- 
put thresholds) = 0.00001, and momentum parameter = 
0.8. 

VII. RESULTS 
In this section we present some numerical evidence for 

our claims as well as an application of our analytical tools. 

A .  The Generalized XOR 
The XOR problem for real-valued input is harder than 

the corresponding discrete problem. This does not imply 
that the problem cannot be solved by a single hidden layer; 
we have explicitly constructed a solution involving six 
hidden neurons. 

The nets of Fig. 1 each have six hidden neurons but 
none of them has found a satisfactory solution. Each has 
errors in the range 25-30%. We found that only about 
half of the single networks could come up with the correct 
picture, i.e., errors in the range 0-5%. The other half 
retained error rates of 25-30% despite extended training. 
The figure is meant to underline the dramatically im- 
proved performance obtained by using a consensus deci- 
sion rule even with an ensemble of only three networks. 

B. Classification of Random Patterns 
This model problem is our main source of experimental 

back-up. The problem is approximately linearly separa- 
ble, as the region of each pure pattern can be “cut out” 
of the hypercube by a hyperplane. Disregarding the chance 
that two regions may overlap, the problem is solvable by 
a simple perceptron [16]. 

With fewer than ten hidden neurons, the network has to 
provide some data reduction. We expect a lower bound of 
around ten neurons needed in the hidden layer for good 
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performance without much training [3]. If we include the 
possibility that best performance involves encoding, the 
lower bound goes down to 4 hidden neurons ( 10 < 24). 

The first set of experiments use a shared training set 
(mode one). To find the optimal number of hidden neu- 
rons, we perform a crossvalidation experiment as pre- 
sented in Fig. 3. Each net has been trained by 5000 pat- 
tern presentations (showings) using patterns randomly 
chosen from the 100-member training set, Each point rep- 
resents the average performance of three networks with 
different initial w’s. As expected, we see that the nets with 
fewer than ten hidden neurons perform significantly worse 
than the limiting performance seen for nets with more than 
ten. Combined with the observation that the training time 
grows linearly with the number of hidden neurons, this 
shows that the optimal configuration has - 13 neurons. 

To further bring down the error rate, we examine two 
options: using an ensemble of copies of our network with 
one hidden layer as well as the more conventional tactic 
of adding a second hidden layer. 

The experiment of Fig. 4 presents the performance of 
an ensemble of seven nets using a single hidden layer. We 
have given the average performance, the performance of 
the best net in the ensemble and the results of collective 
inference by majority and plurality. In order to facilitate 
counting, we have enforced a valid vote from each net- 
work by letting the output neuron with the maximum out- 
put define the class, i.e., we set that neuron to 1 and the 
rest to - 1. To assess the importance of ensemble size we 
have performed the experiment presented in Fig. 5 using 
ensembles with 3, 5 ,  1 1, and 15 members. While there is 
a substantial gain on going from three to five nets, we note 
that the gain is leveling off for the larger ensembles. 

We compare the performance of an ensemble of one 
hidden layer nets with the average performance of two 
layer nets in Fig. 6. The figure shows the performance of 
ensembles of three and five nets, each with 10 hidden neu- 
rons, compared to two-layer nets having, respectively, 15 
and 25 neurons in each layer. The constructions have 
pairwise the same number of hidden neurons but the per- 
formance using ensembles is better than the performance 
of the more complex network. We note, however, that 
there is an improvement in individual performance on 
going to two-layer nets. Further improvement yet can be 
obtained by going to ensembles of two layer nets. This is 
illustrated in Fig. 7 which shows the collective perfor- 
mance of an 11 copy ensembles of 2 hidden layer nets. 

While individual performance remained unaffected, the 
use of independent training sets (mode two) gave mark- 
edly better results than using the same training set for all 
copies (mode one). This is shown in Fig. 8 for seven net- 
works using one hidden layer. 

Fig. 9 compares the experimental problem difficulty 
distributions p with shared and independent training sets 
as well as with our maximum entropy prediction for seven 
networks tested on inputs with a 20% chance of bit in- 
version. Note that the predicted p lies much closer to the 
data for the networks with independent training. This is 

probability 
of error 

10 20 30 40 50 60 70 
Number of hidden neurons. 

% noise. 

-0- 5% -.- 10% 

-0- 15% 

Fig. 3.  Network architecture as assessed by crossvalidation for classifi- 
cation of random patterns. The figure shows performance versus number 
of hidden neurons using test sets with 0, 5 ,  10, 15, and 20% probability 
of bit inversion in the input. 
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Fig. 4 .  Performance versus noise level in the test set is shown for individ- 
ual and for consensus decisions. Data displayed shows the average and 
the best network, as well as collective decisions using majority and plu- 
rality for seven networks trained on individual training sets. 
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Fig. 5 .  The figure examines performance versus noise level in the test set. 
Plurality performance is shown for ensembles of 1 ,  3 ,  5, 1 1 ,  and 15 
networks trained on shared training sets. 

the general trend for all our predictions. Note that even at 
this high noise level where the generated patterns overlap, 
the probability p ( 0  > 0.5) is only around 0.2. This is 
the limiting error rate for an infinite ensemble using ma- 
jority; plurality can only do better. For error rates of 15 %, 
lo%, 5 % ,  and 0% this limiting probability is 0.09, 0.03, 
0.004, and 0 ,  respectively. 

Using the maximum entropy model for the problem dif- 
ficulty distribution p ,  gives excellent predictions of per- 
formance for the independently trained networks. This is 
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Fig. 6 .  The figure compares hidden neuron effectiveness as part of a sec- 
ond layer or as part of another network used in the ensemble. Perfor- 
mance curves are shown for ensembles of 3 and 5 single layer nets with 
10 hidden neurons each which are to be compared with the average per- 
formance of nets with 15 and 25 neurons in each of two hidden layers. 
Note that the ensembles outperform the corresponding two layer nets. 
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Fig. 9. The problem difficulty distribution predicted by maximum entropy 
for a test set with 20% noise is compared to experimental distributions 
for seven networks trained independently and for seven networks that 
shared a training set 
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Fig. 7. The figure shows the improvement obtained by using ensembles of 
networks with two hidden layers. The average performance of a single 
network is compared to the majority and plurality performance of 11 
copies of a two hidden layer network having 25 neurons in each hidden 
layer. Error rates were measured on test sets with 10 000 inputs. 
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Fig. 8. The effect of using independent versus shared training sets is shown 
for majority and plurality consensus among seven networks. 

illustrated in Fig. 10 for performance using majority con- 
sensus among seven networks. Using our difficulty distri- 
bution p ,  and the plurality performance p measured at one 
ensemble size, we can select an effective degree of con- 
fusion parameter Me, so the observed performance comes 
as close as possible to the performance predicted by (8). 

.*- Ma] shared 

.O- Mal indep 

-8- Max Entropy 

0% 5% 10% 15% 20% 

chance of bit inversion In test set 

Fig. 10. Majority performance predicted by maximum entropy is com- 
pared to experimental performance for seven networks trained indepen- 
dently and for seven networks that shared a training set. 

Me, can then be used to predict the performance for other 
ensemble sizes. If we also have a measured value of the 
majority performance, a slightly less noisy value of Me, 
can be estimated by requiring that the improvement of 
plurality performance over majority performance match 
the predicted improvement. Specifically, we choose Meff 
so the ratio of (8) to ( 5 )  match the observed ratio as closely 
as possible. By either of these methods we find Me, values 
of approximately 4, 5 ,  7, and 9 for noise levels of 5 % ,  
lo%, 15 % , and 20%, respectively. The performance for 
15% chance of bit inversion using Meff = 7 is shown in 
Fig. 11 next to the experimental data for independently 
trained networks. 

VIII. CONCLUSIONS 
The basic conclusion of the present paper is that using 

an ensemble of neutral networks with a plurality consen- 
sus scheme can be expected to perform far better than 
using a single copy. Slightly inferiorly trained networks 
are a free by-product of most tuning algorithms; it is de- 
sirable to use such extra copies even when their perfor- 
mance is significantly worse than the best performance 
found. Better performance yet can be achieved through 
careful planning for an ensemble classification by using 
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Fig. 11. Plurality performance for independently trained neural networks 
is compared to predicted performance on data with 15% chance of bit 
inversion. The predictions use an estimated effective degree of confusion 
M and the difficulty distribution obtained by maximum entropy. 

the best available parameters and training different copies 
on different subsets of the available database. 

Crossvalidation is the ultimate test of performance. This 
measure of performance is applied after the training set is 
learned well and measures the true objective function in 
the training of neutral networks: the number of errors 
which will be made during their execution phase of op- 
eration, i.e., the capacity to generalize. We have shown 
how cross validation may be used to optimize network 
architecture; in particular, we have analyzed the effect of 
varying the number of hidden neurons and layers in a 
Feed-forward network. 

The models were tested using experiments on a simple 
problem which modeled the essential features of a linearly 
separable problem with a noisy rule. Our models of en- 
semble performance gave good quantitative predictions for 
identically trained networks on different training sets cho- 
sen from the database. The prediction of performance by 
a majority consensus is based only on the mean error rate 
of one network. The predictions for plurality consensus 
also need an estimated effective “degree of confusion” 
parameter. 

We presented arguments to explain the excellent per- 
formance of consensus schemes among neutral networks. 
An intuitive picture of these arguments is: the search for 
good weights takes place in a space with many “traps” 
which correspond to different ways of “generalizing” the 
rule hidden in the training set. 
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