
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. IO, OCTOBER 1990 993

Neural Network Ensembles
LARS KAI HANSEN AND PETER SALAMON

Abstract-We propose several means for improving the performance
and training of neural networks for classification. We use crossvali-
dation as a tool for optimizing network parameters and architecture.
We show further that the remaining residual “generalization” error
can be reduced by invoking ensembles of similar networks.

Zndex Terms-Crossvalidation, fault tolerant computing, neural net-
works, N-version programming.

I. INTRODUCTION
ECENT schemes for training neural networks involv- R ing hidden neurons have caused a resurgence of in-

terest in nonalgorithmic supervised learning. A super-
vised learning scheme is implemented using a database
which consists of a set of input patterns (a sample from
the set of possible inputs) together with the corresponding
targets (classifications). The objective of the training is to
let the trainee extract relevant information from the da-
tabase in order to classify future input patterns: in other
words to generalize [11.

The present paper advocates a number of procedures for
analyzing and improving classification by networks. The
procedures that we introduce require very little specifics
of the neural network involved; we may think of the net-
work merely as a pattern recognition device with tunable
parameters which has been trained under supervision, i.e.,
which has been shown a given set of input-output pairs.
For most architectures, these tunable parameters take the
form of the weights w . This includes feed-forward nets
[2], Boltzmann machines [3], Madalines [4], recurrent
nets [5] , etc.

As our principal device for analyzing performance, we
apply the concept of crossvalidation to neural networks.
The basic idea is to use only a portion of the database in
training the network and to use the rest of the database in
assessing the capacity of the network to generalize. Such
a procedure is in fact well-known within statistical pattern
recognition; we argue below that it is also an important
procedure for neural networks. Once we can assess the

Manuscript received March 20, 1989; revised March 14, 1990. Rec-
ommended for acceptance by R. De Mon. The work of L. K. Hansen was
supported by the Danish Teknologiradet. The work of P. Salamon was sup-
ported by the Naval Ocean Systems Center under Contract N66001-87-
D0136.

L. K. Hansen was with the Department of Mathematical Sciences, San
Diego State University, San Diego, CA 92182. He is now with ANDREX
Radiation Products AIS, Halfdansgade 8, DK-2300 Copenhagen S, Den-
mark.

P. Salamon is with the Department of Mathematical Sciences, San Diego
State University, San Diego, CA 92182.

IEEE Log Number 9036965.

performance of the network, we can optimize such per-
formance by varying network characteristics and architec-
ture.

A residual error will typically remain even after opti-
mizing all available network characteristics [6]. To fur-
ther reduce this error we propose to use a device from
fault tolerant computing [7]. We run not a single network
but an ensemble of networks, each of which have been
trained on the same database. The basic idea is to classify
a given input pattern by obtaining a classification from
each copy of the network and then using a consensus
scheme to decide the collective classification by vote.

11. CROSSVALIDATION FOR NETWORK OPTIMIZATION
For supervised learning we employ a database as de-

scribed above including a representative sample of the set
of possible input patterns i and the corresponding output
patterns o b . In general the network is supposed to deduce
a “noisy rule” from the database. This rule is stored in
the particular matrix of weights w which is selected so as
to minimize the number of errors in the assignments i p --f
&(io) made by the network on a subset of the inputs.
Hence the input-output relation can be encoded by a well
trained w , i.e., by a significantly lower number of bits
than were contained in the database used in its training.
The extra bits in the database represent redundancy and
noise which we try to avoid modeling. From this per-
spective, the choice of a network architecture amounts to
a choice of parametrization for this input-output relation.
Crossvalidation is the standard tool in deciding between
alternative choices of parametrization for a data set by
statistical methods [8].

By contrast, the standard procedure for training a neural
network involves training on the complete database by
minimizing the accumulated misclassification of inputs in
the dataset 121. Since the overall goal is not to minimize
errors on the dataset but rather to minimize misclassifi-
cation on a much larger set of conceivable inputs, cross-
validation gives a much better measure of expected ability
to generalize.

As an example, consider choosing the number of hid-
den neurons in the network. Statistically this can be in-
terpreted as the size of the parameter set used to model
the data. As measured by the ability to generalize there is
a limit to the desired size of any network architecture.
This follows from the basic observation that it might not
be optimal to train a neural network to perfection on a
given finite database because of noise contamination. But
then exactly how much should it be trained in order to

0162-8828/90/1000-0993$01 .OO 0 1990 IEEE

994 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 10. OCTOBER 1990

produce the best generalizations? An unbiased estimate
can be obtained by bipartitioning the database into spe-
cific training and test sets. Overtraining will then show up
as poorer performance on the test set, i.e., when cross-
validating.

The method is not limited to choosing the number of
neurons. Crossvalidation also allows comparing different
architectures, i.e., which neurons are hooked to which
others. For example, one can use it to compare the per-
formance of one and two layers of hidden neurons in a
feed forward network. One can also use it to select the
number of copies of the network used in parallel. This is
the topic of the next section.

111. ENSEMBLES OF NEURAL NETWORKS
Standard practice [2], [6], [9], [lo], [111 dictates that

we perform some trial tunings to find an acceptable ar-
chitecture and tuning for the network and then trust all
future classifications to the best network we find. It turns
out however that it is preferable to keep the complete set
of networks (or at least a screened subset) and run them
all with an appropriate collective decision strategy. In
analogy with physical theory, we will refer to the set of
neural networks used as an ensemble [l].

Ensembles are desirable due to the basic fact that se-
lection of the weights w is an optimization problem with
many local minima. All global optimization methods in
the face of many local minima yield “optimal” parame-
ters (w) which differ greatly from one run of the algo-
rithm to the next, i.e., which show a great deal of ran-
domness stemming from different initial points (W O) and
sequencing of the training examples. This randomness
tends to differentiate the errors of the networks, so that
the networks will be making errors on different subsets of
the input space.

The networks will differ in the values of the weights w
for several reasons discussed in the following section.
These different weights correspond to different ways of
forming generalizations about the patterns inherent in the
training set. As each network makes generalization errors
on different subsets of the input space, we shall argue that
the collective decision produced by the ensemble is less
likely to be in error than the decision made by any of the
individual networks. Our argument is further supported
by our experiments. The conclusion is that the ensemble
can be far less fallible than any one network.

This is dramatically illustrated in Fig. 1 which shows
three networks trained to identify points in the first and
third quadrants. While none of the three individual net-
works have correctly learned the rule, their majority vote
does remarkably well. The experiment is discussed fur-
ther in the experimental section below.

The performance in Fig. 1 is unusual. As shown by
Eckhardt and Lee [7], using collective performance for
fault-tolerant applications by either hard or software does
not necessarily improve the reliability of the output ob-
tained. Central to this issue is the extent to which errors
tend to coincide. In fact, for independently trained neural

10.000 showings

NN ‘I NN ‘2 NN ‘3 MaJOrlly m m
20,000 showings

NN - 1 NN ‘2 NN ‘3 Majority

30,000 showlngs

NN ‘I NN ‘2 NN ‘3 Ma j o n ty

LlMb
Fig. 1. Three networks trained to identify inputs (x , y) as belonging to the

first and third quadrants (black) or the second and fourth quadrants
(white). The figure shows the classification by each of the networks and
their majority decisions.

networks, the extent of coincidence is likely to be low.
We begin our analysis of ensemble performance with a
discussion of why this is the case.

IV. THE PROBLEM OF MANY LOCAL MINIMA
A. How Local Minima Differ

The multiple minima structure of the objective function
used in tuning the weights w follows from the symmetries
of the networks. While all symmetry-related nets produce
identical output, the system is likely to end up in “mixed”
configurations that resemble different symmetry related
solutions in different regions. It is well known from the
analysis of disordered materials [121 that multiple discrete
symmetries lead to frustration and a combinatorial explo-
sion of local minima.

To illustrate this fact, we specify a particular feed for-
ward network of the type for which Rummelhart et al .
devised the Back propagation method. We consider a three
layer network combined from an input slab, a layer of
hidden neurons and an output slap as depicted in Fig. 2.
The computing neurons perform calculations of the form

where s; is a neuron in the layer preceding sp and g (*) is
the sigmoid function as exemplified in Fig. 2. We have
represented the tunable thresholds by additional fixed-
state neurons in the preceding slabs.

With any form of the sigmoid function there is a dis-
crete symmetry (i.e., a transformation leaving the output
invariant) related to a simple permutation of indexes

HANSEN AND SALAMON: NEURAL NETWORK ENSEMBLES 995

Possible
Input S e t

Input V. MODELS OF COLLECTIVE PERFORMANCE
Neurons

Hidden output
Neurons Neurons

Fig. 2. A Rumelhardt architecture is shown using 20 input neurons, a sin-
gle layer of 10 hidden neurons, and an output layer of 10 neurons. This
architecture is employed for the experiments on classification of random
patterns described below. The inset shows the sigmoid function used as
the nonlinearity in the neurons.

among the hidden neurons. As the typical sigmoid has the
two properties of antisymmetry and saturation for large
arguments, additional symmetries follow. From the for-
mer property arrives a discrete symmetry by inverting the
state of a given hidden neuron and changing signs on the
corresponding w’s. The latter leads to an approximate
continuous symmetry. Due to the saturation we can mul-
tiply the weights approaching a given neuron by an arbi-
trary scale factor without significantly changing the out-
put. This approximate continuous symmetry indicates that
the solution space has the form of a family of “cones. ’ ’

B. Diferent Search Methods and Objectives
Despite the fact that our ultimate objective function is

the ability to generalize, the objective for the tuning phase
of the project is rather the sum of squared deviations be-
tween the outputs obtained for the training set and the
outputs produced by the network. Either objective suffers
from the problem of many local minima.

Tuning algorithms will end up at different w’s follow-
ing independent runs for many reasons which may include
different starting weights, different sequences of the train-
ing samples, different partitionings of the database used
during training, or different random numbers generated
during a stochastic search algorithm. Finding good algo-
rithms for solving global optimization problems in the face
of many local minima is a highly active field without firm
recipes. We note that the conventional implementation of
“gradient descent” for neural nets [111 contains a signif-
icant component of “self-annealing. ” By this we mean
that it allows occasional “uphill” moves characteristic of
methods like simulated annealing [131 rather than greedy
algorithms like steepest descent. It is customary to update
the weights using only an estimate of the local gradient
of the error function obtained from one or at most a few
input samples of the database. The noise-level of this es-
timate can be suppressed in part by “momentum”
smoothing parameters [6]. The approach resembles a dy-
namical system interacting with an external stochastic
source (a heatbath) simulated with molecular dynamics
1141.

An ensemble of independently trained networks can
make a collective classification several ways. The most
powerful voting rule appears to be plurality in which the
collective decision is the classification reached by more
networks than any other. Simpler to analyze is the major-
i t y voting rule which chooses the classification made by
more than half the networks. When there is no agreement
among more than half the networks, the result is consid-
ered an error. Note that a correct decision by majority is
perforce a correct decision by plurality.

A . Independent Errors
The simplest model of network performance is to as-

sume that all neural networks arrive at the correct classi-
fication with a certain likelihood 1 - p and that they make
independent errors. The chances of seeing exactly k errors
among N copies of the network is then

(:)p*(1 - P) N - k

which gives the following likelihood of the majority rule
being in error

(3)

It can be shown by induction for odd N (or separately for
even N) that provided p < 1 / 2 , (3) is monotonically de-
creasing in N . In other words, if each network can get the
right answer more than half the time, and if network re-
sponses are independent, then the more networks used,
the less the likelihood of an error by a majority decision
rule. In the limit of infinite N , the ensemble error rate
goes to zero. The conclusion is of course reversed for p

To find the probability that a plurality decision makes
an error is considerably more complicated. In particular,
this needs some assumptions about the type of errors
made, i.e., when two networks both make an error in
classification, how likely are they to choose the same in-
correct classification. This is difficult to predict and is
likely to be rather problem dependent. As an illustration
consider the possibility that classifications are difficult be-
cause pairs of inputs bear a strong resemblance to their
partners. In this case there are effectively only two choices
at each input and plurality becomes the same as majority.
We proceed by adopting what we will refer to as the as-
sumption of ‘‘random errors. ” Specifically, we assume
that when an error in classification occurs, the incorrectly
identified output is chosen with equal likelihood from
among the M - 1 remaining possible classifications. The
exact value of M appropriate to a certain analysis then
becomes a parameter which we call the effective “degree
of confusion. ” It can reveal important information about
the structure of a problem. Below we estimate this param-

> 1/2.

eter Meffective.

996 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. IO, OCTOBER 1990

Using the random errors assumption, we calculate the
probability of making an error with plurality voting by N
networks choosing between M outputs. Let ni be the num-
ber of networks identifying a given input with output pat-
tern i, i = 1, * * * M. Without loss of generality we as-
sume that the correct pattern for the identification is i =
1 . For a given value of n, , an error occurs if and only if
at least one of the ni, i > 1 , is at least as large as nl . The
probability of an error with plurality consensus then be-
comes

N c Prob [al](1 - Prob[(Max ni) < nlln~]).
ni = O i > 1

(4)

Letting p again denote the probability that any one of the
N networks makes an error we find

The other probability in (4) is harder to compute. Given
the value of n,, we are faced with making N - n, choices
from among M - 1 equally likely alternatives. The re-
quired probability asks for the likelihood that the maxi-
mum of the frequency of the most commonly chosen pat-
tern is less than nl . This probability can be obtained using
the closed form summability of certain generating func-
tions [151. To use this summability one maps the problem
into the equivalent one of counting the number of func-
tions from a set with M - 1 elements to the set { 1 ,
n, - 1 } such that the sum of the values taken on by this
function is exactly N - n,. Omitting the details, the cal-
culation gives

Either of the above models predicts performance far su-
perior to the performance we see experimentally. This is
due to the fact that the behavior of the networks is in fact
not independent,

B. A Model Incorporating Input Dificulty
The dominant cause for dependence among errors in

classification is the fact that a specific input has an asso-
ciated difficulty independent of which network is doing
the classification. For the example in Fig. 1, points near
the origin are harder to classify correctly than points near
the comers of the square. On inputs which are difficult to
classify, all of the neural networks have a lower prob-
ability of coming up with the right output. Eckhardt and
Lee [7] have proposed a model incorporating such input
specific difficulty within a study of N-version program-
ming. Their model as applied to neural nets is briefly as
follows. For each possible input a, we define 8 (a) to be
the fraction of (an infinite) ensemble of neural networks
trained according to a fixed algorithm (or distribution of
algorithms) which fails to correctly classify input a. Then
the performance of an ensemble of N networks on this
input under majority voting becomes

(9)

We now define the classification difficulty distribution p.
By p we shall mean a measure on the set of 8 values so
that p (0) d8 is the fraction of inputs a on which a fraction
between 8 and 8 + de of the networks make an erroneous
classification. Then the predicted performance by major-

) k M - 1 N - n l (I + k) + M - 2
k = O (k)(N - n l (l + k)

Prob [(Max ni) < n, 1 n ,] =
i > 1

for nl 2 1 + (N - l) / M . For smaller n l we find
ity rule among N networks is

Prob [(Max ni) < nl In,] = 0. (7)
i > 1

Substitution of (3, (6), and (7) into (4) yields the prob-
ability Pplurality of failure by an N network ensemble with
random using plurality voting among patterns At this point in their development of the theory, Eckhardt

and Lee state that this majority rule need not perform bet-

HANSEN AND SALAMON: NEURAL NETWORK ENSEMBLES 997

ter than an individual network. Since the integrand is
smaller for N networks than for 1 provided 8 < 1 / 2 , this
can only happen when the majority of the inputs have high
8 values, i.e., when p has significant mass in the interval
[1 / 2 , 1 1. For neural networks, this will happen only if
the input distribution during operation of the neural net-
work is very different from the input distribution during
training or if the networks are very poorly trained, i.e., if
their performance on the training set identifies the correct
outputs less than 1 / 2 the time. For N -, 03, the error rate
tends to SA.5 p (0) de.

The performance of an ensemble using plurality with
an effective degree of confusion M and an input difficulty
distribution p is computed analogously to (10).

tribution. This gives p* which is of the Boltzmann form
e -he,

p (e i) = ~ (14) e ‘

j

This estimate is useful when experimental p’s are un-
available. A value of X can be selected so (13) holds and
then formulas (10) and (1 1) above can be used to predict
ensemble performance.

Note that even these models do not fully treat the de-
pendence between neural networks. While this model
gives a good qualitative fit to observed data, the real mea-
sure of ensemble performance must come from crossval-
idation.

r C. A Model Incorporating Network Projiciency
We now model a different source of correlation in the (11)

These models are not useful without some knowledge
of the distribution p of classification difficulties. This
quantity is observable as a discrete distribution over the 0
values 0, 1 / K , 2/K, * (K - l) / K , 1, where K i s the
number of networks in the ensemble used to observe p .
For each input CY, the estimate of O(a) is the fraction of
the K networks which classify CY incorrectly. The estimate
of p (i / K) = pi is then the fraction of questions in a large
sample which result in i of the K networks making erro-
neous classifications.

One can make a useful guess of the distribution p using
maximum entropy techniques. We note that for an infifiite
ensemble, the average error rate j? for all networks trained
according to the given regimen must be the mean Sop (e)
de. Since this average error rate is easily (and standardly)
measured for each network in the ensemble, we can
choose p to be the distribution p* which is the most ran-
dom distribution on [0, 11 with mean p in the sense that
it maximizes the integral j p (e) In p (e) de.

To understand the meaning of most random in the pres-
ent context, consider again the discrete case where 8 can
take on only the values i / K . Consider the performance of
K copies of the system on L classifications. We have got
to distribute a certain total number T = pKL of errors
among the networks. Each such distribution of errors will
result in a corresponding empirical pi which is the number
of problems on which i of the K networks erred. The num-

performance of the networks : their individual proficiency.
An accurate model of performance with individual profi-
ciencies can provide a criterion for screening the networks
for membership in the ensemble. As an illustration, con-
sider development of a neural network application which
resulted in one copy which achieves an error rate of 0.1
and two other copies that each have an error rate of 0.2.
Will the ensemble of three networks make fewer errors
than the best network alone?

The predictive power of the present models, can only
be relied on for qualitative information. The answer,
however, comes out affirmative even when the other two
networks are much less well trained. In the present paper
we examine only the simplest case: independent perfor-
mance using three networks. Qualitatively this case al-
ready shows the important features. Using only three net-
works avoids the complication of an unknown M since the
three network consensus makes an error if and only if at
least two of the participating networks make an error re-
gardless of whether their erroneous identifications coin-
cide.

Consider three networks with proficiencies p l , p 2 , and
p3. Without loss of generality we take the minimum error
to be p l . The condition that the consensus error rate be
less than the best individual error rate is

P1 > PlP2P3 + P l P 2 0 - P 3)

+ PlP3(1 - P2) + P2Pd1 - P d . (15) ber of ways we can achieve a certain set of values for the
pi’s is given by

II For given p l , this represents the region in the first quad-
U.

(1 2) rant of the p2, p3 plane below a rectangular hyperbola
which crosses the axes at (0 , 1) and (1, 0) , respectively.
Thus one of the networks can be quite poor provided the
other is sufficiently good. To get an idea how good they
have to be, consider the casep2 = p3 = p . Expanding the
criterion to second order in p 1 this becomes

rI(1 0

K K c pi = 1 and c ipi = PK.

with

(13)
i = l i = 1

Maximizing the entropy then corresponds to maximizing
this number of ways of realizing p with a given mean

3
P < 6 - P1 + 2 P Y 2 - 2P: + O M) . (16)

error rate p. It is usually justified by assuming that all p’s
consistent with the mean are equally likely and then in-
volving the sharply peaked nature of the multinomial dis-

For the illustration above with p1 = 0.1 and p = 0.2 we
see that it does pay to use consensus classification.

998 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. IO, OCTOBER 1990

VI. EXPERIMENTS

Below we illustrate the above ideas on two examples.
Both examples involve a known rule and hence constitute
toy problems. This made it possible to mimic the cross-
validation by generating any desired number of test pat-
terns cheaply. This made good statistics possible for our
experiments. For real examples this function can be per-
formed, albeit to lesser accuracy, using crossvalidation.

Both of our experiments employ a simple feed forward
architecture which we tuned by backpropagation [2]. Val-
idation schemes were used to measure the effects of en-
semble size and of network architecture.

Backpropagation being a standard technique, we pre-
sent only the details needed to make our experiments re-
producible. We have found it useful to allow for some
flexibility in the choice of the gradient descent parameter
r] . For the first five showings of the training set, we used
r] = r] / 100 to absorb the strong gradients in the transient
phase. In addition we allow for different 7’s for the dif-
ferent components of the w-gradient; we have used r]’s
specific to weights and thresholds as described below.

The iteration scheme indicated above has been initial-
ized with random w’s as well as random “velocities”:

-

with rand r ’ uniform in [- 1 , I] .
We have enforced a vote from each network by letting

the output neuron with the maximum output define the
class.

A . Example I : The Generalized XOR

One of the classical problems which cannot be solved
without “hidden” neurons is the XOR (or Parity) prob-
lem. In its standard form it calls for reproducing the truth-
table of the logical function XOR. With two binary input
neurons representing the operands and one output neuron
representing the value, it can be shown that at least two
hidden neurons are needed within the Feed-forward ar-
chitecture of Fig. 2 [2]. We have generalized the problem
by accepting continuously valued input and letting the
classification be: o (x , y) = sign (x * y) . The example is
included for its visual impact. Fig. 1 shows the perfor-
mance of three independently trained Feed-forward net-
works. We have included six hidden neurons in each net-
work. Each square represents a scan of the classifications
within the domain, [-0.5, 0.51 X [-0.5, 0.51, after
presentation of 10 000 uniformly chosen random points.
For the test set, the unit square has been discretized in a
15 by 15 lattice and the classification of each cell center
has been calculated using the individual nets as well as
the majority rule.

The parameter values used for training were: 9
(weights) = 0.05, r] (thresholds) = 0.01, and momentum
parameter = 0.99.

B. Example 2: A Model Problem
As our second and more realistic example we have cho-

sen the classification of a number of regions in the 20-
dimensional hypercube. The regions are defined by 10
“pure” patterns chosen at random. Each pure pattern
(comer of the hypercube) defines a class which is desig-
nated 1-10. Samples from each class are generated by
perturbing the corresponding pure pattern by bit-inversion
with specified probability p. The class-coding utilizes the
standard form [6] having ten output neurons and letting
output-pattern j be defined by neuron j being “on” (+ 1)
and the rest “off’ (- 1). The training set was created
with p = 0.1 while we use test sets with p: 0.0, 0.05, 0.1,
0.15 and 0.2. This models extrapolation as well as inter-
polation. We note that regions used in test sets with p =
0.20, are expected to have a significant overlap as two
random pure patterns differ by - 10 bits while there is
about 20% probability that 6 or more bits are changed.

We have performed training sessions in two modes, in
the first mode we trained each network on the same train-
ing set of 100 examples (10 from each region), while in
the second mode we used independently generated sets of
100 examples.

The parameter values used for training were: r]

(weights) = 0.05, r] (hidden thresholds) = 0.01, r] (out-
put thresholds) = 0.00001, and momentum parameter =
0.8.

VII. RESULTS
In this section we present some numerical evidence for

our claims as well as an application of our analytical tools.

A . The Generalized XOR
The XOR problem for real-valued input is harder than

the corresponding discrete problem. This does not imply
that the problem cannot be solved by a single hidden layer;
we have explicitly constructed a solution involving six
hidden neurons.

The nets of Fig. 1 each have six hidden neurons but
none of them has found a satisfactory solution. Each has
errors in the range 25-30%. We found that only about
half of the single networks could come up with the correct
picture, i.e., errors in the range 0-5%. The other half
retained error rates of 25-30% despite extended training.
The figure is meant to underline the dramatically im-
proved performance obtained by using a consensus deci-
sion rule even with an ensemble of only three networks.

B. Classification of Random Patterns
This model problem is our main source of experimental

back-up. The problem is approximately linearly separa-
ble, as the region of each pure pattern can be “cut out”
of the hypercube by a hyperplane. Disregarding the chance
that two regions may overlap, the problem is solvable by
a simple perceptron [16].

With fewer than ten hidden neurons, the network has to
provide some data reduction. We expect a lower bound of
around ten neurons needed in the hidden layer for good

HANSEN AND SALAMON: NEURAL NETWORK ENSEMBLES

0.6

0.5 -.

0 4 . -

0.3 -.

0.2

0 1 -.

0
0

999

-

--

7-

performance without much training [3]. If we include the
possibility that best performance involves encoding, the
lower bound goes down to 4 hidden neurons (10 < 24).

The first set of experiments use a shared training set
(mode one). To find the optimal number of hidden neu-
rons, we perform a crossvalidation experiment as pre-
sented in Fig. 3. Each net has been trained by 5000 pat-
tern presentations (showings) using patterns randomly
chosen from the 100-member training set, Each point rep-
resents the average performance of three networks with
different initial w’s. As expected, we see that the nets with
fewer than ten hidden neurons perform significantly worse
than the limiting performance seen for nets with more than
ten. Combined with the observation that the training time
grows linearly with the number of hidden neurons, this
shows that the optimal configuration has - 13 neurons.

To further bring down the error rate, we examine two
options: using an ensemble of copies of our network with
one hidden layer as well as the more conventional tactic
of adding a second hidden layer.

The experiment of Fig. 4 presents the performance of
an ensemble of seven nets using a single hidden layer. We
have given the average performance, the performance of
the best net in the ensemble and the results of collective
inference by majority and plurality. In order to facilitate
counting, we have enforced a valid vote from each net-
work by letting the output neuron with the maximum out-
put define the class, i.e., we set that neuron to 1 and the
rest to - 1. To assess the importance of ensemble size we
have performed the experiment presented in Fig. 5 using
ensembles with 3, 5 , 1 1, and 15 members. While there is
a substantial gain on going from three to five nets, we note
that the gain is leveling off for the larger ensembles.

We compare the performance of an ensemble of one
hidden layer nets with the average performance of two
layer nets in Fig. 6. The figure shows the performance of
ensembles of three and five nets, each with 10 hidden neu-
rons, compared to two-layer nets having, respectively, 15
and 25 neurons in each layer. The constructions have
pairwise the same number of hidden neurons but the per-
formance using ensembles is better than the performance
of the more complex network. We note, however, that
there is an improvement in individual performance on
going to two-layer nets. Further improvement yet can be
obtained by going to ensembles of two layer nets. This is
illustrated in Fig. 7 which shows the collective perfor-
mance of an 11 copy ensembles of 2 hidden layer nets.

While individual performance remained unaffected, the
use of independent training sets (mode two) gave mark-
edly better results than using the same training set for all
copies (mode one). This is shown in Fig. 8 for seven net-
works using one hidden layer.

Fig. 9 compares the experimental problem difficulty
distributions p with shared and independent training sets
as well as with our maximum entropy prediction for seven
networks tested on inputs with a 20% chance of bit in-
version. Note that the predicted p lies much closer to the
data for the networks with independent training. This is

probability
of error

10 20 30 40 50 60 70
Number of hidden neurons.

% noise.

-0- 5% -.- 10%

-0- 15%

Fig. 3. Network architecture as assessed by crossvalidation for classifi-
cation of random patterns. The figure shows performance versus number
of hidden neurons using test sets with 0, 5 , 10, 15, and 20% probability
of bit inversion in the input.

-*- av -O- best -.- ma]. -O- plur

15 -
probability

of error
10 -

5 -.

0 2 4 6 8 10 12 14 16 18 20
chance of bitinversion in test set

Fig. 4 . Performance versus noise level in the test set is shown for individ-
ual and for consensus decisions. Data displayed shows the average and
the best network, as well as collective decisions using majority and plu-
rality for seven networks trained on individual training sets.

probability
of error

30

...
-0. 3 -.- 5
-0- 11

+ 15

0 5 10 15 20
chance of bit inversion in test set

Fig. 5 . The figure examines performance versus noise level in the test set.
Plurality performance is shown for ensembles of 1 , 3 , 5, 1 1 , and 15
networks trained on shared training sets.

the general trend for all our predictions. Note that even at
this high noise level where the generated patterns overlap,
the probability p (0 > 0.5) is only around 0.2. This is
the limiting error rate for an infinite ensemble using ma-
jority; plurality can only do better. For error rates of 15 %,
lo%, 5 % , and 0% this limiting probability is 0.09, 0.03,
0.004, and 0 , respectively.

Using the maximum entropy model for the problem dif-
ficulty distribution p , gives excellent predictions of per-
formance for the independently trained networks. This is

1000 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 10, OCTOBER 1990

2 5 30 i
probability

of error

-*- av 2'15

-0- 3 1'10

-9- av 2'25

-0- 5 1'10

0 5 10 15 2 0
chance of bit inversion in test se1

Fig. 6 . The figure compares hidden neuron effectiveness as part of a sec-
ond layer or as part of another network used in the ensemble. Perfor-
mance curves are shown for ensembles of 3 and 5 single layer nets with
10 hidden neurons each which are to be compared with the average per-
formance of nets with 15 and 25 neurons in each of two hidden layers.
Note that the ensembles outperform the corresponding two layer nets.

probability
01 error

0

0.01
0 117 217 317 417 517 617 1

Fig. 9. The problem difficulty distribution predicted by maximum entropy
for a test set with 20% noise is compared to experimental distributions
for seven networks trained independently and for seven networks that
shared a training set

probability
of error

0 2 5 T

G% 5% 10% 15% 20%

chance of bit inversion in test se1

Fig. 7. The figure shows the improvement obtained by using ensembles of
networks with two hidden layers. The average performance of a single
network is compared to the majority and plurality performance of 11
copies of a two hidden layer network having 25 neurons in each hidden
layer. Error rates were measured on test sets with 10 000 inputs.

probability
of error

O Z 5 T

-*- Ma) shared

.O- Plui shared ..- Ma] indep

O- Plur mdep

-*- 20% shared

-0- 20% indep

0 2

0 15

0 1

0 05

0

0% 5% 10% 15% 20%

chance 01 bit lnvewon in test set

Fig. 8. The effect of using independent versus shared training sets is shown
for majority and plurality consensus among seven networks.

illustrated in Fig. 10 for performance using majority con-
sensus among seven networks. Using our difficulty distri-
bution p , and the plurality performance p measured at one
ensemble size, we can select an effective degree of con-
fusion parameter Me, so the observed performance comes
as close as possible to the performance predicted by (8).

.*- Ma] shared

.O- Mal indep

-8- Max Entropy

0% 5% 10% 15% 20%

chance of bit inversion In test set

Fig. 10. Majority performance predicted by maximum entropy is com-
pared to experimental performance for seven networks trained indepen-
dently and for seven networks that shared a training set.

Me, can then be used to predict the performance for other
ensemble sizes. If we also have a measured value of the
majority performance, a slightly less noisy value of Me,
can be estimated by requiring that the improvement of
plurality performance over majority performance match
the predicted improvement. Specifically, we choose Meff
so the ratio of (8) to (5) match the observed ratio as closely
as possible. By either of these methods we find Me, values
of approximately 4, 5 , 7, and 9 for noise levels of 5 % ,
lo%, 15 % , and 20%, respectively. The performance for
15% chance of bit inversion using Meff = 7 is shown in
Fig. 11 next to the experimental data for independently
trained networks.

VIII. CONCLUSIONS
The basic conclusion of the present paper is that using

an ensemble of neutral networks with a plurality consen-
sus scheme can be expected to perform far better than
using a single copy. Slightly inferiorly trained networks
are a free by-product of most tuning algorithms; it is de-
sirable to use such extra copies even when their perfor-
mance is significantly worse than the best performance
found. Better performance yet can be achieved through
careful planning for an ensemble classification by using

HANSEN AND SALAMON: NEURAL NETWORK ENSEMBLES 1001

Plurality error
probability

O ’ T

.e- experiment

.O- prediction

I
1 3 5 7

Number 01 Networks

Fig. 11. Plurality performance for independently trained neural networks
is compared to predicted performance on data with 15% chance of bit
inversion. The predictions use an estimated effective degree of confusion
M and the difficulty distribution obtained by maximum entropy.

the best available parameters and training different copies
on different subsets of the available database.

Crossvalidation is the ultimate test of performance. This
measure of performance is applied after the training set is
learned well and measures the true objective function in
the training of neutral networks: the number of errors
which will be made during their execution phase of op-
eration, i.e., the capacity to generalize. We have shown
how cross validation may be used to optimize network
architecture; in particular, we have analyzed the effect of
varying the number of hidden neurons and layers in a
Feed-forward network.

The models were tested using experiments on a simple
problem which modeled the essential features of a linearly
separable problem with a noisy rule. Our models of en-
semble performance gave good quantitative predictions for
identically trained networks on different training sets cho-
sen from the database. The prediction of performance by
a majority consensus is based only on the mean error rate
of one network. The predictions for plurality consensus
also need an estimated effective “degree of confusion”
parameter.

We presented arguments to explain the excellent per-
formance of consensus schemes among neutral networks.
An intuitive picture of these arguments is: the search for
good weights takes place in a space with many “traps”
which correspond to different ways of “generalizing” the
rule hidden in the training set.

ACKNOWLEDGMENT
We would like to thank the participants of the neural

network seminar at S.D.S.U. for helpful comments and
discussions. In addition we would like to thank S. Brunak
for helpful criticisms, W. Root for some combinatorial
assistance, and L. Liao for pointing out the relation be-
tween our problem and fault tolerant computing.

REFERENCES
[l] E. Levin, N. Tishby, and S. Solla, “A statistical approach to learning

and generalization in layered neural networks,” Proc. IEEE (Special
Issue on Neural Networks), C. Lau, Guest Ed., 1990, to be published.

D. E. Rumelhart, G. E . Hinton, and R. J . Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. 1:
Foundations, D. E. Rumelhart and J . L. McClelland, Eds. Cam-
bridge, MA: MIT Press, 1986.
D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning al-
gorithm for Boltzmann machines,” Cognitive Sci. , vol. 9 , pp. 147-
169, 1985.
B. Widrow and R. Winter, “Neural nets for adaptive filtering and
adaptive pattern recognition,” Computer, vol. 25, Mar. 1988.
F. J . Pineda, “Generalization of backpropagation to recurrent neural
networks,” Phys. Rev. Lett . , vol. 59, pp. 2229-2232, 1987.
T. J . Sejnowski and C. R. Rosenberg, “Parallel networks that learn
to pronounce English text,” Complex Sysz., vol. 1, pp. 145-168,
1987.
D. E. Eckhardt, Jr., and L. D. Lee, “A theoretical basis for the anal-
ysis of multiversion software subject to coincident errors,’’ ZEEE
Trans. Sojiware Eng., vol. SE-11, pp. 1511-1517, 1985.
G. T. Toussaint, “Bibliography on estimation of misclassification,”
IEEE Trans. Inform. Theory., vol. IT-20, pp. 472-479, 1974.
N . Qian and T. J . Sejnowski, “Predicting the secondary structure of
globular proteins using neural network models,” J . Molecular Biol. ,
vol. 202, pp. 865-884, 1989.
H. Bohr, J . Bohr, S. Brunak, R. M. J. Cotterill, B. Lautrup, L.
Ndrskov, 0. H. Olsen, and S. B. Petersen, “Protein secondary struc-
ture and homology by neural networks,” Fed. European Biochem.
Soc. Lett., vol. 241, pp. 223-228, 1988.
R. P. Lippmann, “An introduction to computing with neural nets,”
IEEE ASSP Mag., pp. 4-22, Apr. 1987.
R. G. Palmer, “Broken ergodicity,” Advances Phys., vol. 31, pp.
669-735, 1982.

[13] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, pp. 671-680, 1983.

[14] T. Schneider and E . Stoll, “Molecular-dynamics study of a three di-
mensional one-component model for distortive phase transitions.”
Phys. Rev. B , vol. 17, p. 1302, 1978.

Princeton,
NJ: Princeton University Press, 1980.

New York: Spartan,
1959.

[151 J . Riordan, An Introduction to Combinatorial Analysis.

[161 F. Rosenblatt, Principles of Neurodynarnics.

Lars Kai Hansen received the M.Sc. and Ph.D.
degrees in physics from the University of Copen-
hagen, Denmark, in 1984 and 1986, respectively.

Since 1987 he has been with Andrex Radiation
Products A/S of Copenhagen, doing research in
computer vision for automation of nondestructive
testing systems. From August 1988 to March 1989
he was Adjunct Professor at the Department of
Mathematical Sciences of San Diego State Uni-
versity, San Dlego, CA, working with applica-
tions of neural networks. His research interests are

in the areas of applied statistical mechanics, machine vision, and parallel
computer architectures.

Dr. Hansen was awarded the Gold Medal of the University of Copen-
hagen in 1986.

Peter Salamon received the B.A. degree in math-
ematics from Lindenwood College, St. Charles,
MO, the M.S. degree in applied mathematics from
Drexel University, Philadelphia, PA, and the
Ph.D. degree in chemical physics from the Uni-
versity of Chicago, Chicago, IL.

He served as a Postdoctoral Fellow in the
Chemistry Institute at Tel Aviv University during
1978-1979 and as a Visiting Professor in Mathe-
matics at Arizona State University during 1979-
1980. Since 1980, he has been with the Deuart-

ment of Mathematical Sciences at San Diego State University, San Diego,
CA. In 1986-1987 he was a Guest Professor in the Physics Laboratory of
the Oersted Institute in Copenhagen and he was an Alexander von Hum-
boldt stipendiate in Theoretical Physics at the University of Heildeberg
during the Summer and Fall of 1987. His research interests are in the areas
of stochastic algorithms and in-principle limits for physical processes.

