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Decision Combination in Multiple Classifier Systems 
Tin Kam Ho, Member, IEEE, Jonathan J. Hull, Member, IEEE, and Sargur N. Srihari, Senior Member, IEEE 

Abstract-A multiple classifier system is a powerful solution to 
difficult pattern recognition problems involving large class sets 
and noisy input because it allows simultaneous use of arbitrary 
feature descriptors and classification procedures. Decisions by 
the classifiers can be represented as rankings of classes so that 
they are comparable across different types of classifiers and 
different instances of a problem. The rankings can be combined 
by methods that either reduce or rerank a given set of classes. 
An intersection method and a union method are proposed for 
class set reduction. Three methods based on the highest rank, 
the Borda count, and logistic regression are proposed for class 
set reranking. These methods have been tested in applications on 
degraded machine-printed characters and words from large lexi- 
cons, resulting in substantial improvement in overall correctness. 

Index Terms- Decision combination, classifier combination, 
multiple classifier systems, character recognition, pattern recog- 
nition. 

I. INTRODUCTION 

RADITIONAL pattern recognition systems use a single T feature descriptor and a particular classification procedure 
to determine the true class of a given pattern. For problems 
involving a large number of classes and noisy inputs, perfect 
solutions are often difficult to achieve. Recently, it has been 
observed that features and classifiers of different types comple- 
ment one another in classification performance [51, [121, 1131, 
[ZO], [21], [30]. This has led to a belief that by using features 
and classifiers of different types simultaneously, classification 
accuracy could be improved. However, the combination of 
potentially conflicting decisions by multiple classifiers remains 
an unsolved problem. Ideally, the combination function should 
take advantage of the strengths of the individual classifiers, 
avoid their weaknesses, and improve classification accuracy. 
In this paper, we provide a set of methods useful for these 
purposes. Although a thorough theoretical investigation is 
beyond the scope of this paper, we will demonstrate the 
effectiveness of the methods by experimental results. 

Previous methods for classifier combination include inter- 
section of decision regions [9], voting methods [28], prediction 
by top choice combinations [33], and use of Dempster-Shafer 
theory [27], [34]. In the methods of [9], [28], and [33], only 
the top choice from each classifier is used, which is usually 
sufficient for problems with a small number of classes. But 
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for problems with many classes, as correct rate at top choices 
drops, secondary choices often contain near misses that should 
not be overlooked. In [33], all possible combinations of top 
choices for a given set of classes are examined. A test is 
proposed for the dominance of each true class occurring with 
each combination that would justify the final assignment of 
the input to that class. Reliable decisions are achieved by ex- 
haustive enumeration, and therefore the method is expensive. 
For n classes and IC classifiers, 7hk combinations need to be 
covered by the training data to sufficient density; the method 
is impractical for a large number of classes. Many confidence- 
based combination methods suffer from a lack of consistency 
in the definition of confidence measures for different instances 
of a given problem and different types of classifiers. The 
methods proposed in this paper are motivated by an attempt to 
overcome these difficulties. As we will see, the examination 
of the strengths and weaknesses of each method leads to the 
problem of determining classifier correlation, which is the 
central issue in deriving an effective combination method. We 
attempt to analyze classifier correlation by a statistical model 
based on logistic regression. 

Our methods have been tested in several OCR applications, 
including handwritten digit recognition [ 141 and degraded mul- 
tifont machine-printed character and word recognition [ 181. 
The strengths of the methods are best demonstrated in prob- 
lems involving a large number of classes. In a word recognition 
experiment where four classifiers were used to discriminate 
between 1365 classes, an improvement of 7.8% at the top 
choice over that of the best individual classifier was achieved. 

Organization of discussions: In Section I1 we discuss the 
reasons for our use of class rankings to represent class 
decisions, as well as two objectives of decision combination, 
namely, class set reduction and reordering. Methods for 
achieving each objective are proposed in Sections 111 
and IV. The use of multiple classifiers allows dynamic 
classifier selection in response to each input and a multistage 
combination. Issues involved in dynamic classifier selection 
and multistage organizations are discussed in Section V. 
Section VI describes experimental results. 

11. INPUTS AND OUTPUTS OF DECISION 
COMBINATION FUNCTIONS 

A decision combination function must receive useful rep- 
resentations of classifier decisions. We decide to use rankings 
of classes instead of unique class choices or numerical scores 
computed for each input. Rankings contain more information 
than unique choices for a many-class problem. For a mixture of 
classifiers of various types, numerical scores such as distances 
to prototypes, values of an arbitrary discriminant, estimates 
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of posterior probabilities, and confidence measures are not 
directly usable because of the incomparability of their scales 
and, in some cases, inconsistency across different instances of 
a problem. For instance, the distance between characters c and 
o could be smaller than the distance between two instances of 
the character w, yet the smaller distance does not necessarily 
lead to a more correct decision. Rankings are on a weaker scale 
to which all such scores can be easily converted. Combination 
methods based on rankings are therefore more general and 
applicable to a mixture of classifiers of arbitrary types. 

For simplification, we assume that in each combination the 
same number of distinct ranks are used by each classifier for a 
given set of classes. In practice, it is possible that ties exist in 
the rankings produced by some classifiers. If this happens, we 
suggest that the rank scores on the finer scales be converted 
to ranks on the coarsest scale. For example, suppose that four 
classifiers are to be combined, one of which can accept only a 
single class as being correct and rejects all other classes. In this 
case, even though the other classifiers can produce a complete 
ranking of the class set, these rankings should be converted to 
binary scores, with one score for the top choice and another for 
the rest. Alternatively, the classifiers using the same number 
of distinct ranks may be combined first, and the combined 
rankings can then be converted to the same scale as those used 
by the others, so that they can be combined at a second stage. 

A multiple classifier system is justified only if the combined 
decisions are better than those of any single classifier in the 
system. The comparison of performance can be based on two 
criteria, which suggest two different approaches to decision 
combination. We will refer to these two approaches as class 
set reduction and class set reordering. In class set reduction, 
the objective is to extract a subset from a given set of classes, 
such that the subset is as small as possible yet still contains 
the true class. In class set reordering, the objective is to derive 
a consensus ranking of the given classes, such that the true 
class is ranked as close to the top as possible. 

It is useful to differentiate between the two objectives be- 
cause they can be achieved by different means. Some methods 
for decision combination produce a small subset that hardly 
ever misses the true class, but the classes within the subset are 
not ordered. Other methods may produce good rankings where 
the true class is often ranked close to the top but, occasionally 
for a bad input, the true class may be far away from the top, 
so that it will be missed if only a small neighborhood is taken. 

These two objectives are equivalent under special 
conditions: I )  If it is required that the result set derived by 
a reduction method always contains only one class, then 
this is the same as requiring a reordering method to rank 
the true class always at the top. 2) If the rankings derived 
by a reordering method are so good that the true class is 
always ranked above a certain position, then it is always 
possible to include the true class in a neighborhood up to 
that position. The two approaches can also be applied to the 
same problem, so that the set of classes may first be reduced 
and then reranked, or first reranked and then reduced to a 
small neighborhood near the top of the ranking. 

The rest of this paper details methods that are useful for re- 
ducing or reordering decisions. In Section 111, two approaches 

TABLE I 
AN EXAMPLE OF DETERMINING NEIGHBORHCOD SIZES FOR AN INTERSECTION 

I rank; of classifier C, 

input I, 
I1 
I2 

4 
4 

15 
I6 

thresholds 
(colmax, ) 

c1 
3 
1 

34 
9 
4 
16 
34 

e2 c3 
12 1 
5 29 
3 4 
7 6 
36 5 
2 3 

36 29 

e4 
24 
12 
6 
1 
5 
4 
24 

to class set reduction as well as some approximation methods 
are discussed. In Section IV, three methods for class set 
reordering are presented. Certain classifiers may be redundant 
in a combination and can be eliminated for efficiency. A 
simple case is that of two classifiers producing identical 
decisions for every input. In other cases, the significance of 
each classifier depends on the particular decision combination 
method. We will discuss the conditions under which a classifier 
is redundant in the context of each combination method. 

111. METHODS FOR CLASS SET REDUCTION 
Class set reduction is aimed at reducing the number of 

classes in the output list without losing the true class. The 
criteria for success are therefore twofold: The size of the result 
set should be minimized, and the probability of inclusion of 
the true class should be maximized. Two simple and direct 
methods can be used for these purposes. Both methods attempt 
to derive a threshold on the ranks according to the worst-case 
ranks of the true classes. 

The first method computes the intersection of large neigh- 
borhoods taken from each classifier. The sizes of the neigh- 
borhoods are determined by the ranks of the true classes in 
the worst cases in the training set. After rankings are obtained 
for all training pattems, the lowest rank ever given by each 
classifier to any true class is determined. These lowest ranks 
are taken as thresholds on the ranks. An example of threshold 
computation is shown in Table I. For a test pattern, classes 
ranked above the thresholds are selected and intersected. In 
this method, a classifier is redundant if its threshold is equal 
to the size of the class set. 

The second method computes the union of small neighbor- 
hoods taken from each classifier. The thresholds on the ranks 
are selected by a max-min procedure illustrated in Table 11. 
The left half of Table I1 shows the ranks of the true class of 
each training pattem. The best (minimum) rank in each row 
is determined and entered under the classifier that produces 
it in the right half of the table. The maximum of all these 
minima is computed for each column. It can be shown that, if a 
neighborhood is obtained from each classifier by thresholding 
the ranks using these maxima, a union of the neighborhoods 
for each training pattem always contains its true class. 

With the union method, any classifier j with threshold 
colmax, being 0 is redundant, meaning that its decision is 
always inferior to some other classifier’s and should not be 
included in the union. Classifier C, in Table I1 is redundant 
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input I ,  
I1 
12  

4 

15 
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rcri~k', of classifier C, r o i ~ ~ l ~ l  I11 1 

C1 CZ C? C4 CI C2 C? C4 
3 1 2  1 2 4 0  0 1 0  
1 5  2 9 1 2  1 0  0 0 

1 3 3 4 3  4 6 0  3 0 0  
9 7 6 7 0 0 6 0 
4 36 5 5 4 0 0 0 

I f i 1 6 2 3 4 0 2 0 0  
th rediolds( colritn.r, ) 

in this sense. Other than the obvious redundancy indicated 
by a threshold of zero, a classifier can also be redundant in 
the sense that the union size can be smaller if that classifier 
is not used. For instance, using only the classifiers { CI, C3) 
in the above example could result in a smaller union size. 
However, to determine the subset of classifiers optimal in this 
sense requires an exhaustive search over all the subsets [ 171. 

Obviously, the intersection approach is useful only when 
all the classifiers have moderate worst-case performance, 
so that small neighborhoods are obtained without missing 
the true classes. However, this is usually not the case for 
a set of specialized classifiers using a small number of 
features, so each classifier may be excellent for certain 
types of inputs but poor for others. The neighborhoods 
may be undesirably large, since they are determined by the 
worst-case behavior of the classifiers. 

The union approach is preferred if the classifiers are spe- 
cialized on different types of inputs. The ideal case is that the 
set of classifiers is sufficiently rich and all types of inputs 
are included in their specialties. That is, for each pattern 
there is always one classifier that recognizes it well. Referring 
back to Table 11, this corresponds to the case when the row 
minima are small and so are the column maxima. Small 
neighborhoods, and hence a small union, are obtained in such 
cases. Essentially, the union approach focuses on the best-case 
behavior of each classifier. 

The thresholds given by the max-min procedure are 
absolute in the sense that they guarantee 100% success in 
including the true class for every training pattern. Because of 
this, the effectiveness of the method is sensitive to outlying 
worst cases. This is also true for the intersection method. 
In practical applications, if there are few outlying cases, 
and if the cost of a small number of errors is affordable, 
an approximation method is preferred. Approximations can 
be made by removing extremely bad cases from the training 
set according to the desired accuracy, or by using votings 
instead of intersections or unions. 

Iv .  METHODS FOR CLASS SET REORDERING 
Class set reordering attempts to improve the rank of the 

correct class. The criterion for success is the position of the 
true class in the resultant ranking, as compared to its position 
in the rankings before combination. A method is considered 
successful if the probability of having the true class near the 
top of the combined ranking is higher than that in each of the 
original rankings. We give three methods for this purpose in 
the following. 

4 3 6 0  

A. The Highest Rank Method 

Similar to the union approach, the highest rank method 
is good for combining a small number of classifiers, each 
of which specializes on inputs of a particular type. Assume 
that for each input pattern m classifiers are applied to rank a 
given set of classes. Thus each class receives rri ranks. The 
minimum (highest) of these m ranks is assigned to that class 
as its score. The classes are then sorted by these scores to 
derive a combined ranking for that input. Ties in the combined 
ranking may be broken arbitrarily to achieve a strict linear 
ordering. 

This reordering method is particularly useful in a problem 
involving a large number of classes and few classifiers. The 
advantage is its ability to utilize the strength of each classifier. 
For any input pattern, as long as there is one classifier that 
performs well and ranks the true class near the t o p s a y ,  at 
rank k-no matter how the other classifiers perform, the true 
class will be at a position no farther than IC x m from the top 
in the combined ranking, where m is the number of classifiers. 
Using this method, a classifier is redundant if the rank it 
assigns to a true class is always lower than those assigned 
by other classifiers. 

One disadvantage with this method is that the combined 
ranking may have many ties. The number of classes sharing 
the same ranks depends on the number of classifiers used. 
Therefore, this method is useful only if the number of clas- 
sifiers is small relative to the number of classes. Otherwise, 
most of the classes are involved in ties and the final ranking 
is not interesting. 

B. The Bordu Count Method 

In the context of group decision theory, the mapping from a 
set of individual rankings to a combined ranking is referred to 
as a group consensus function. One useful group consensus 
function is referred to as the Borda count [4], which is a 
generalization of the majority vote. The Borda count for a 
class is the sum of the number of classes ranked below it by 
each classifier. The consensus ranking is given by arranging 
the classes so that their Borda counts are in descending 
order. 

The magnitude of the Borda count for each class measures 
the strength of agreement by the classifiers that the input pat- 
tern belongs to that class. For a two-class problem, the Borda 
count is equivalent to the simple majority vote. Variations of 
the Borda count function, such as those for handling ties in 
the rankings, are discussed in [4]. 

The Borda count function assumes additive independence 
among the contributions of the individual classifiers. Using this 
method, a classifier is redundant if it always reinforces errors 
made by the others, that is, if all the classes it ranks above 
a true class are always contained in some other classifier's 
choices above the true class. 

The Borda count method is simple to implement and re- 
quires no training. However, it does not take into account 
the differences in the individual classifier capabilities. All 
classifiers are treated equally, which may not be preferable 
when we know that certain classifiers are more likely to be 
correct than others. 
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C .  Logistic Regression 

In order to combine classifiers with nonuniform perfor- 
mances, the Borda count method needs to be modified by 
assigning weights to the rank scores produced by each clas- 
sifier. The weights should reflect the relative significance of 
each classifier evaluated in the context of the combination. 
Moreover, it will be useful to measure the confidence of the 
combined decisions given by the Borda count method. Possible 
measures include a statistic derived from the distribution of 
sums of a given range of ranks, and the intervals between the 
computed Borda counts for a given set of classes [ 1 1 1 ,  [29]. 

However, the distribution of rank sums is affected by the 
correlation between the classifiers and does not necessarily 
indicate classification correctness. For instance, if rankings by 
two identical classifiers are combined, the rank sum for the 
class that is their common top choice falls on an extreme of 
the distribution, whether that decision is correct or not. The 
two effects, namely, classification correctness and classifier 
correlation, must be distinguished and modeled separately. 

Motivated by the need to distinguish the correct classes 
from the incorrect ones, we associate a binary variable Y, 
to each class c for a given pattem. Y, has the value 1 if c 
is the true class of that pattem, and 0 otherwise. The goal 
of recognition is therefore to predict the value of Y, for each 
class c. Hence the decision combination problem can be 
reformulated in the context of regression analysis. The rank 
scores produced by each classifier are considered as random 
variables that are used to predict the value of Y, for each 
class c, and their effects on Y, can be modeled by a multiple 
regression function. Since Y, is binary, a logistic response 
function is useful in this context [l] ,  [6]. 

For simplicity in notation, we denote the response variable 
Y, by Y ,  which has a value for each class with respect to 
each input pattern: Y = 1 for the true class and Y = 0 for 
other classes. For a training pattem, the true class is known 
and therefore each class has a known value of Y. For an 
unseen pattern, the value of Y for each class has two possible 
outcomes. 

Denote the probability P(Y = 1lx) by ~(x), where x = 
( ~ 1 ,  .1:2, . . . , .L~,~) represents the rank scores assigned to that 
class by classifiers C1, C2,. . . , C,. For convenience in dis- 
cussion, we assume that L ,  has the largest value if the class is 
ranked at the top by C,. Using the logistic response function, 

cxp(a + Pl.L.1 + P 2 L 2  + . . . + Pm.6,) 

1 + exp(a + p1.I.1 + p 2 z 2  + . . . + /Lz ,n)  
.(X) = 

and 

where a ,  [j = (B1, Lj2,  . . . , [j,,,) are constant parameters. 
The transformation L(x) = log - is referred to as 

the log-odds, or the logit, and is linearly related to x. The 
logit transformation links the problem to linear regression 
analysis. Methods based on maximum likelihood or weighted 
least-squares can be used to estimate the model parameters 
a, [jl, [92, . . . , [jrr1 [I], [6]. The relative magnitudes of the pa- 
rameters indicate the relative significances of the classifiers in 

‘“01: 
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-6 
-7  
-8 
-0 - 10 

Fig. 1. Plot of empirical logits versus ranks by two classifiers. 

their marginal contribution to the logit. Hence the parameters 
can be used as weights for the rank scores. 

For each test pattem, the logit for each class is predicted 
by the estimated model. If only a ranking of the class set 
is needed, the classes can simply be sorted by the predicted 
logits in descending order. The class with the largest logit 
is then considered as most likely to be the true class. The 
values of T(X) or the logit can also be used as a confidence 
measure. A threshold on these values can be determined 
experimentally, so that classes with confidences lower than 
the threshold can be rejected. 

Example: Weight estimation by logistic regression is illus- 
trated with an example application in word recognition, where 
two classifiers were used to recognize an image as one of 
67 305 classes. 

We consider only the top ten choices from each classifier 
and use the largest score to represent a top choice. That is, 
a class receives a 10 if it is ranked at the top and a 0 if 
it is ranked below the 10th position. Using a union method 
together with three other classifiers, a neighborhood of up to 
50 observations were taken for each image. A total of 43 422 
observations were obtained using 1055 training images. 

The distribution of the rank scores in these observations and 
the empirical logits derived from this set of data are shown in 
Table 111. A plot of the empirical logits versus 2 1  and 22 is 
given in Fig. 1. A regression plane was fit to these logits by the 
SAS procedure LOGISTIC [32]. Fig. 2 shows the estimated 
regression plane. The parameter estimates are given in Table 
IV. Both z1 and xz are significant according to the parameter 
estimates. The estimated regression model is 

L(x) = -5.8557 + 0.196521 + 0.400822. 

Remarks: In an ordinary logistic regression analysis, the 
Chi-square value computed for each model parameter can 
be used to evaluate the statistical significance. However, 
caution has to be taken in this application. Because there is 
only one true class for each pattem, Y = 1 for one class 
implies Y = 0 for all the others. In other words, values 
of the response variable Y are related for each pattem but 
independent across different pattems. This may lead to the 
problem of overdispersion, or underestimates of the standard 
errors [6], [26]. Nevertheless, the parameter estimates are 
unaffected, and the relative significance of each classifier 
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TABLE 111 
EXAMPLE DISTRIBUT~ON OF RANK SCORES AND THE EMPIRICAL LOGITS 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
2 
4 
5 
9 
10 
0 
3 
4 
7 
9 
10 
0 
3 
8 
9 
10 
0 
1 
8 
9 
10 
0 
2 
7 
8 
9 
10 

25145 
918 
912 
889 
86 1 
852 
832 
748 
704 
601 
410 
18 
12 
13 
13 
10 
896 
13 
16 
15 
23 
10 
879 
14 
16 
31 
19 
849 
21 
32 
24 
I5 
82 1 
12 
40 
31 
21 
19 

179 
6 
1 
5 
5 
8 
14 
16 
19 
39 
94 
1 
1 
2 
1 
6 
4 
1 
1 
1 
2 
1 
2 
2 
1 
3 
9 
1 
1 
3 
1 
6 
1 
1 
1 
4 
2 
8 

0.007 
0.007 
0.001 
0.006 
0.006 
0.009 
0.017 
0.021 
0.027 
0.065 
0.229 
0.056 
0.083 
0.154 
0.077 
0.600 
0.004 
0.077 
0.062 
0.067 
0.087 
0.100 
0.002 
0.143 
0.062 
0.097 
0.474 
0.001 
0.048 
0.094 
0.042 
0.400 
0.001 
0.083 
0.025 
0.129 
0.095 
0.42 1 

-4.938 
-5.024 
-6.815 
-5.175 
-5.143 
-4.659 
-4.068 
-3.823 
-3.585 
-2.668 
-1.212 
-2.833 
-2.398 
- 1.705 
-2.485 
0.405 
-5.407 
-2.485 
-2.708 
-2.639 
-2.351 
-2.197 
-6.083 
- 1.792 
-2.708 
-2.234 
-0.105 
-6.743 
-2.996 
-2.269 
-3.135 
-0.405 
-6.709 
-2.398 
-3.664 
-1.910 
-2.25 1 
-0.318 

6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 
9 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

0 802 3 0.004 
3 21 1 0.048 
6 18 1 0.056 
8 34 2 0.059 
9 44 2 0.045 
10 20 9 0.450 
0 761 4 0.005 
1 14 1 0.07 1 
5 24 1 0.042 
6 28 3 0.107 
7 32 2 0.062 
8 43 1 0.023 
9 47 4 0.085 
10 41 25 0.610 
0 707 2 0.003 
3 19 1 0.053 
7 39 1 0.026 
8 56 3 0.054 
9 56 6 0.107 
10 58 33 0.569 
0 625 7 0.01 1 
2 13 1 0.077 
5 30 1 0.033 
6 29 4 0.138 
8 58 6 0. IO3 
9 132 16 0.121 
10 78 48 0.615 
0 469 6 0.013 
1 12 1 0.083 
3 12 1 0.083 
4 14 1 0.07 1 
5 23 2 0.087 
6 20 5 0.250 
7 24 6 0.250 
8 36 8 0.222 
9 63 22 0.349 
10 375 331 0.883 

-5.585 
-2.996 
-2.833 
-2.773 
-3.045 
-0.201 
-5.243 
-2.565 
-3.135 
-2.120 
-2.708 
-3.738 
-2.375 
0.446 
-5.865 
-2.890 
-3.638 
-2.872 
-2.120 
0.278 
-4.48 1 
-2.485 
-3.367 
- 1.833 
-2.159 
-1.981 
0.470 
-4.346 
-2.398 
-2.398 
-2.565 
-2.351 
-1.099 
-1.099 
- 1.253 
-0.623 
2.018 

SI : 
x 2  : 
N : 

rank by classifier 1 
rank by classifier 2 
number of classes receiving ( x 1 ,  x2 ) 

N ( Y = ~ )  : number of true classes at ( 1 1 ,  ~ 2 )  

*(x) : N( Y = l )  / N  

can be told by the relative magnitude of those estimates. 
ne expe,.imentally by 

observing its performance on a test set. Parameter Standard Wald Pr > Standardized 

TABLE IV 
ANALYSIS OF ?vfAXlMUM LIKELIHOOD hTIMATES IN LKJGISTIC REGRESSION of a model can be 

The residual plot can be used to examine whether there is 
a systematic lack of fit between the estimated values and the Estimate Estimate 

INTERCEPT -5.8557 0.0779 5656.2065 O.ooO1 
actual values of the logits. Goodness of fit largely depends on 0.1965 0.00883 495.1244 O.ooO1 0.297987 
whether the linearity assumption is satisfied by the empirical x2 0.4008 0.0103 1516.6643 O.ooO1 0.607888 
logits. The linearity assumption may be invalid if more ranks 
instead of a small number of top decisions are used. This 
is because, for most classifiers, .(x) increases much more 

near the top of the rankings than it does at lower 
positions. The Surface formed by the empirical logits is likely 
to be curvilinear on a large rank scale. 

This problem can be overcome in three ways. A better 
fit may be obtained by using a nonlinear regression model. 
A second solution is to truncate the rankings at a certain 

threshold. The decisions at positions lower than the threshold 
may simply be grouped together and assigned a single rank, 
just like what we did in the previous example (assigning 
0 to all classes ranked below 10). A third solution is to 
attempt a piecewise linear fit. For discussions on goodness 
of fit, diagnostic procedures, and model building techniques, 
interested readers are referred to [ l l ,  [2], 1191, [25], and [26]. 
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Using the same definition of Y, the problem can be re- 
formulated as a two-class discrimination problem and solved 
by discriminant analysis. However, it has been observed that, 
if the normality assumption for x is invalid, which is true 
in our case, logistic regression is preferred over discriminant 
analysis [8], [31]. 

Our use of a single response variable Y for all the classes 
is a simplification that limits the number of parameters to be 
estimated. In cases when the number of classes is small and 
sufficient training data are available, a more elaborated model 
can be constructed by using a different response variable Y, 
for each class c [lo]: 

. . .  

where 7r,(x) = P ( K  = llx), i = 1 , .  . . , n and n is the number 
of classes. For an unseen input, the output ranking is given by 
arranging the classes in descending order of predicted logit. 
The model has n(m+ 1) free parameters and is therefore good 
only for small n and m with sufficiently large training sets. 

v. ALTERNATIVES TO PARALLEL 
APPLICATION AND COMBINATION 

A set of classifiers can cooperate in ways other than 
a simultaneous and parallel application. These include the 
possibilities of dynamically selecting the most appropriate 
classifier for each input and multistage combination. 

A. Dynamic Classifier Selection 

Consider an oracle that always predicts the best classifier 
for each pattem. If such an oracle is available, we can take the 
decisions only from the selected classifier and ignore those by 
others. This is an ideal case of dynamic classifier selection. 

The decision of such an oracle could be based on confidence 
of feature detection, or the correlation of classifier performance 
with measurable characteristics of the pattem, or estimation of 
the type of degradation in a pattem. Dynamic selection can be 
applied on a set of classifiers that are statically determined to 
be useful when all possible cases are considered. 

One way to approximate such an oracle is to specify a 
set of mutually exclusive conditions that divides a training 
set into several partitions. Classifier performance is measured 
separately on each partition so that the best classifier for each 
partition is determined. Each test pattem will be categorized 
first into a partition and then classified by the corresponding 
best classifier. 

the type of inputs represented by that partition. After the model 
is estimated for each partition, a suitable decision combination 
function can be selected dynamically for each test case. 

One method to do this is given as follows. Suppose that 
a set of independent classifiers are used. The quality of an 
input pattem can then be characterized by examining the 
class rankings produced by these classifiers. Intuitively, the 
classifiers tend to agree on the top choice for patterns that 
are easy to recognize and tend to disagree for difficult cases. 
Therefore, whether the top choices are the same indicates 
the difficulty of recognizing a particular input. A training set 
can be partitioned according to the state of agreement by 
the classifiers on the top choices. A regression model can 
then be estimated separately for each partition. In test runs, 
a combination function can be dynamically selected according 
to such a state of agreement. 

It is important that the selecting conditions must be cheaply 
computable from the inputs. The importance can be seen if 
this selection is viewed as an intermediate method between two 
extremes, one using a static single classifier and the other using 
one classifier for each class that responds well for patterns of 
only that class. In the latter case, the partitioning condition 
is the true class identity of the input, and hence the selection 
of the best classifier is equivalent to the original recognition 
problem in difficulty. 

B.  Multiple Stage Organization 

A number of classifiers and their combination functions may 
be organized in many different ways. One possibility is that 
all the classifiers are connected in parallel, and their decisions 
are combined by one or several methods applied serially. 
Altematively, the classifiers may be organized in groups, with 
a combination function applied to each group; the combined 
decisions from each group are recombined later to derive a 
final decision. Certain classifiers may be combined using the 
reduction methods, so that other classifiers can be applied to 
the reduced set of classes. There are even more possibilities 
if dynamic selection is applied. 
In general, the classifiers can be organized in a multistage 

structure. At each stage, a group of classifiers operates in paral- 
lel, and their decisions are combined by any one of the methods 
proposed here. A dynamic selector decides which classifiers 
are to be activated at each stage. The set of classes is then 
gradually reduced and reordered as it goes through each stage. 

The optimal design of such a multistage organization 
is likely to be specific to a particular application. Factors 
to consider include the performance of each classifier, 
the correctness of the combined rankings given by each 
method, and the cost of errors. 

VI. EXPERIMENTAL RESULTS 

A. Machine-Printed Word Recognition 
Dynamic selection can also be applied at the decision 

combination level. After the training set has been partitioned 
by a computable condition, the significance of each classifier’s 
contribution can be estimated using the logistic model. The 
estimated model gives the decision combination function for 

The three reranking methods were tested in a word recog- 
nition application, where the objective was to classify a word 
image as one of I365 words in a lexicon. The images were 
collected from machine-printed addresses taken from live mail 
in a post office. The words are in unrestricted font types and 

I T  
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TABLE V 
DEFINITIONS OF AGREEMENT GRADES AND ESTIMATED MODEL PARAMETERS 

Which Classifiers Agree ( . r )  

poly segb sfv bfv 

Estimated Model Parameters 

poly segb sfv bfv Size of 
Partition 

Agreement 
Grade 

1 X X X X 1320 0.3584 1.5048 2.8836 1.0190 
2 X X X 325 0.3955 7.0355 0. I686 0.3563 
3 X X X I36 5.7066 5.7528 0. I362 -0.1444 
4 X X X 454 0.2327 0.0529 5.432 1 0.1187 
5 X X X 712 -0.1032 1.8564 0.8661 0.8590 
6 X X 204 0.4422 o.oO01 2.5731 0.0288 
7 X X 166 0.5860 0.042 1 0.1 122 0.4395 
8 X X 80 0.03 1 1 3.2486 0.5132 -0.0637 
9 X X 82 0.1268 0.9901 0.1603 0.3009 
IO X X 131 2.3 105 1.0479 0.0983 0.0656 
11 X X 46 0.226 1 0.1683 0.3747 0.305 1 
12 968 0.2964 0.3 184 0.2418 0.2013 
all 4624 0.3230 0.2850 0.2627 0.1905 

Fig. 2. Plot of fitted logits versus ranks by two classifiers 

are of highly variable quality. The lexicon was compiled from 
a database of postal words and aliases. 

Four classifiers were designed to rank the lexicon according 
to different features and matching procedures [13], [ 181. 
Classifier 1 uses a polynomial discriminant for character 
recognition and confidence-based contextual postprocessing. 
Classifier 2 is a segmentation-based method using binary pixel 
values as features. Classifiers 3 and 4 are wholistic approaches 
that treat a word as a single symbol [16]. 

The four classifiers were applied to a set of 4624 training 
images, and the top ten choices from the class rankings were 
used to estimate a logistic regression model. In addition, for 
each image, the top choice by each classifier was compared 
to the top choices of the other classifiers and an agreement 
grade was assigned accordingly. 

The agreement grade is assigned by observing if there are 
two or more classifiers making the same top choice, and which 
classifiers they are. This is motivated by the observation that 
the classifiers tend to agree at the top choice for good quality 
images and tend to disagree for bad images. Therefore, the top 
choice agreement can be used as an indicator of image quality. 

There are 12 (C: + Ci + Ci + C t )  possible states of 
agreement among the four top choices, ranging from “all four 
agree” to “all four disagree.” Hence 12 agreement grades are 
defined. The training set is then partitioned into 12 subsets 

TABLE VI 
COMPARISON OF RESULTS BY INDIVIDUAL CLASSIFIERS AND THEIR COMBINATIONS 

% Correct in Top S Choices 

Classifier/ Combination 1 2 3 5 10 
1 )  Character recog- 

nition and postpro- 84.9 88.4 90.3 91.2 92.3 
cessing (poly) 

3) Word-shape with 
stroke direction 65.2 74.5 78.5 82.4 85.5 
features (sfv) 

4) Word-shape with Baird features (bfv) 50.9 59.0 62.2 66.3 70.9 

84.7 96.2 98.6 98.9 5) Combination by the 50,9 
highest rank 

87.4 95.8 9712- 98.2 99.0 6) Combination by the 
Borda count 

96.2 97.5 98.5 99.0 7) Combination by stat- 90,7 
ic regression model 

8) Combination by dy- 
namically selected 93.9 97.2 97.9 98.3 99.0 
model 

9) Oracle 98.1 98.8 99.0 99.1 99.3 

accordingly. A logistic regression model is estimated for each 
subset. The definitions of the agreement grades, as well as the 
estimated model parameters, are given in Table V. 

Note that the agreement grade is defined with no reference 
to the correctness of the top choices. Therefore it is always 
obtainable, even for an unseen image. A regression model 
estimated for the particular class can then be applied to 
combine the rankings. 

A set of 1384 images was used to test the decision com- 
biners as well as the model selector. Table VI summarizes 
the correct rates of the classifiers and their combinations by 
each method. In this test each combination method is applied 
independently. 

Substantial improvements in the combined decisions are 
observed. Line 5 shows that the highest rank method can 
improve the correct rate in the top ten choices substantially. 
Because of arbitrarily broken ties, this method does not give a 



HO et 01.: DECISION COMBINATION IN MULTIPLE CLASSIFIER SYSTEMS 73 

Fig. 3. Example images on the test set. 

good top choice performance. Line 6 shows that the Borda 
count method improves the correct rate at all ranks. Line 
7 shows the improvement achieved by logistic regression. 
Comparing lines 7 and 8 in Table VI, we can see that the 
dynamic selector can further improve the performance over the 
static regression model. This means 1) the agreement grade is a 
good indicator of the input condition, and 2) dynamic selection 
of a combination function using this condition is effective. 
Line 9 shows the possible correct rate were there an oracle 
that could predict which classifier among the four works the 
best for each image. 

B. Identifying Redundant Classifiers 

Another experiment shows how logistic regression can be 
used to identify redundant classifiers. The chosen domain 
is the recognition of degraded machine-printed characters in 
multiple font styles. The characters are in 62 classes, including 
the upper- and lower-case alphabet and 10 numerals. Sample 
images were collected from live mail, scanned on a postal 
OCR at a resolution of 212 pixels per inch. They were then 
binarized and normalized to 24 x 24 in size. The quality of the 
images is highly unstable, and in many cases the defects are 
severe. Examples of the images in the collection are shown 
in Fig. 3. 

Because of simildrities in shape after size normalization, 
several groups of classes are merged into single classes. These 
include the groups {o,O,O}, {l l l lI l i , j} ,  {clC}, { p , P } ,  
{s, S } ,  { U ,  U } ,  {U, V } ,  {w, W } ,  { x , X } ,  and (2, Z } .  There- 
fore, only 48 distinct classes are considered. 

Six classifiers were applied to recognize the characters. The 
features and classification procedures they use are summarized 
in Table VII. The pixel value vector has 576 binary com- 
ponents and contains the normalized 24 x 24 input image. 
The Baird feature vector has 288 components obtained by 
convolving 32 feature templates with the image [3]. Indepen- 
dence among feature components is assumed in the Bayesian 
classifier in this system [7]. The modified nearest-neighbor 
classifier uses the Hamming distance, and it ranks the classes 
according to the distance of the closest sample of each class 
to the input. The modified 2-nearest-neighbor classifier ranks 
the classes according to the averaged distance of two closest 
samples of each class to the input. A set of 19 15 1 samples 
were used to train each of the six classifiers. 

The six classifiers were applied to a set of 8000 sample 
images that are distinct from those used in classifier training. A 
logistic regression analysis was performed using the rankings 
of the 48 classes given by the six classifiers. 

TABLE VI1 
A SET OF CLASSIFIERS FOR CHARACTER RECOGNITION 

Classifier Features Classification Method 

PBC pixel values Bayesian with independence assumption 
PNC pixel values modified nearest-neighbor 
P2N pixel values modified 2-nearest-neighbor 
BBC Baird features Bayesian with independence assumption 
BNC Baird features modified nearest-neighbor 
B2N Baird features modified 2-nearest-neighbor 

For each of the 8000 samples, an observation vector of 
the form ( y ,  RPBC,  RPNC,  R P P N .  RBBC, RBNC,  RBPN) 
was obtained for each class, where Y is 1 if that class is the 
true class for that image and 0 otherwise, and R c  is the rank 
assigned to that class by classifier C for that image. The ranks 
are represented by a descending number, so that Rc is 48 if 
that class is ranked at the top by classifier C and R c  is 1 if it 
is considered the least similar to the input image by C. There 
are 48 such vectors for each training image. To simplify the 
analysis, only the top ten decisions from each classifier were 
considered, that is, the vectors were used in the analysis only 
if any of the Rc’s is larger than 38. 

Nine different models were attempted in the analysis. Table 
VI11 summarizes the results of an analysis using the SAS 
procedure CATMOD [32]. For the pixel features, the results 
indicate that the decisions of both PNC and PBC are significant 
when only these two classifiers are used (model 1). However, 
when P2N is introduced (model 2), PNC becomes insignifi- 
cant. Since its weight estimate becomes close to zero, it has 
almost no influence in promoting the rank of any class and 
can therefore be ignored. The results for the Baird-feature- 
based classifiers are similar (models 3 and 4). Model 9 shows 
that when all six classifiers are used, PNC and BNC become 
insignificant (estimated magnitude of the parameter is small 
and the standard error is large) and the combination should be 
based on the four other classifiers. 

A set of 12000 samples were used to test the performance 
of these models. Table IX shows the performance of each of 
the six classifiers and their combinations by the regression 
method with parameters given in Table VIII. The parameter 
was set to zero if it was determined to be insignificant. 

The fact that the combination (PBC, P2N) performs better 
than either PBC or P2N individually indicates that even 
using the same feature set, different classifier designs give 
independent decisions that can be combined to achieve a 
higher performance level, though the improvement is not as 
remarkable as a combination of classifiers that use different 
feature sets. This suggests that different information contained 
in the feature vectors is utilized in each classification method. 
Such information is effectively used in a multiple classifier 
system. 

From Table IX, we can observe improvements of the top 
choice correct rates in each combination over the individual 
classifiers. The most significant improvement is obtained by 
combining four classifiers (PBC, BBC, P2N, B2N), which 
gives a net increase of 3% in the top choice correct rate 
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TABLE VI11 
ANALYSIS OF MAXIMUM LIKELIHOOD ESTIMATES IN LOGISTIC REGRESSION 

Model Effect Parameter Estimate Chi-square Prob 

1 INTERCEPT 1 
PNC 2 
PBC 3 

2 INTERCEPT 1 
PNC 2 
PBC 3 
P2N 4 

3 INTERCEPT 1 
BNC 2 
BBC 3 

4 INTERCEPT 1 
BNC 2 
BBC 3 
B2N 4 

5 INTERCEPT 1 
PBC 2 
BBC 3 

6 INTERCEPT 1 
PNC 2 
BNC 3 

7 INTERCEPT 1 
P2N 2 
B2N 3 

8 INTERCEPT 1 
PBC 2 
BBC 3 
PNC 4 
BNC 5 

9 INTERCEPT 1 
PBC 2 
BBC 3 
PNC 4 
BNC 5 
P2N 6 
B2N 7 

-23.7605 0.3833 
0.2951 0.00818 
0.1861 0.00625 

-25.0556 0.4121 
-0.0107 0.0215 
0.1730 0.00615 
0.3466 0.0238 

-24.9299 0.4149 
0.3425 0.00920 
0.1633 0.00612 

-0.0100 0.0205 
0.1448 0.00593 
0.4136 0.0235 

0.2277 0.00692 
0.2107 0.00684 

-25.4009 0.4204 
0.2186 0.00766 
0.2974 0.00910 

-27.5226 0.4652 
0.2275 0.00845 
0.3337 0.0104 

0.1085 0.00614 
0.0836 0.00574 
0.1405 0.00764 
0.2076 0.00896 

-27.7886 0.4537 
0.0996 0.00608 
0.0775 0.00563 

-0.0232 0.0212 
0.2130 0.0244 
0.2648 0.0243 

-26.9303 0.4614 

-21.8316 0.3559 

-26.1740 0.4099 

-0.0579 0.0220 

3842.63 O.oo00 
1302.55 O.oo00 
887.27 O.oo00 

3695.84 O.oo00 
0.25 0.6180 

790.01 O.oo00 
212.39 O.oo00 
3610.43 O.oo00 
1384.96 O.oo00 
712.72 O.oo00 

3405.92 O.oo00 
0.24 0.6274 

597.07 O . o o 0 0  
308.93 O.oo00  

3762.15 O.oo00 
1082.12 O.oo00  
948.43 O.oo00 
3650.28 O.oo00  
814.00 O.oo00 
1068.49 O.oo00 
3499.64 o.oo00 
724.48 O.oo00 
1028.18 O . o o 0 0  
4078.14 O . o o 0 0  
312.51 O.oo00 
212.28 O.oo00 
338.62 O.oo00 
536.83 O.oo00 
3751.44 O.oo00  
268.56 O.oo00 
189.54 O.oo00 
6.93 0.0085 
1.20 0.2741 

76.40 O.OOO0 
119.12 O.oo00  

over the best individual classifier (P2N). Corresponding im- 
provements are also observed in larger neighborhoods. In our 
experiments with other classifiers, improvement at top choice 
is usually achievable if three or more classifiers are combined. 
In cases where only two classifiers are combined and their 
errors are highly correlated, the top choice correct rate is not 
necessarily improved. 

VII. CONCLUSION 
A multiple classifier system is suggested to solve complex 

pattern recognition problems. Its advantages include robust- 
ness given by simultaneous uses of complementary recognition 
methods and flexibility in dynamic adaptation. Decisions are 
represented as rankings of a given class set. They can be 
combined by a number of methods that either reduce or 
rerank the class set. These methods are applicable regard- 
less of the type of similarity scores used by the individual 
classifiers, thereby allowing flexibility in selecting the best 
descriptors and similarity functions for each type of useful 
feature for a particular problem. The effectiveness of the 
methods has been demonstrated in several applications with 
real-world data. It is expected that the methods are applicable 
to other problem domains as well, and that they will be most 

TABLE IX 
PERFORMANCE OF CHARACTER CLASSIFIERS 

AND THEIR COMBINATIONS ON TEST SET 

Correct Rate (%) at Top AV Choices 

Model Classifier(s) 1 2 3 4  5 IO 
PBC 79.3 87.8 91.2 92.8 94.3 97.6 
PNC 85.3 91.3 93.3 94.7 95.4 97.7 
P2N 85.8 91.9 93.9 94.9 95.7 97.9 
BBC 79.1 87.5 90.7 92.4 93.9 97.1 
BNC 84.3 90.8 93.3 94.6 95.4 97.7 
B2N 85.4 91.7 93.9 95.1 95.7 98.0 

1 PBC, PNC 85.4 92.2 94.5 95.7 96.7 98.5 
2 PBC, P2N 86.3 92.8 94.7 95.9 96.8 98.6 
3 BBC, BNC 85.3 91.8 94.1 95.3 96.1 98.3 
4 BBC, B2N 86.0 92.3 94.5 95.7 96.4 98.4 
5 PBC, BBC 81.3 89.8 92.7 94.5 95.8 98.3 
6 PNC, BNC 86.7 92.6 94.6 95.6 96.2 98.4 
7 P2N, B2N 86.9 92.9 95.0 95.9 96.5 98.5 

Logistic Regression 

PBC,BBC, pNc, BNC 88.1 93.8 95.7 96.6 97.2 98.8 

PBC, BC, 9 P2N, B2N 88.8 94.1 95.7 96.7 97.4 98.9 

useful for recognition problems involving a large number 
of classes and at least several solutions. Examples of such 
domains include Chinese character recognition, fingerprint 
recognition, face recognition, and certain types of medical 
diagnosis. 

Some other combination functions are useful in special 
types of multiple classifier systems. For systems where all 
the classifier decisions are binary, simple voting methods 
such as the majority vote may be satisfactory. In cases when 
reasonable and consistent confidence measures can be assigned 
to the decisions, heuristic functions or theories for confidence 
combination may be applicable. Other interesting alternatives 
for decision combination include custom-designed decision 
trees, neural networks, and symbolic inference systems. 

Selection of an optimal subset of classifiers by methods 
other than combinatorial search and regression analysis will 
also be interesting. This involves a systematic study of the 
correlation of errors made by the classifiers. The implications 
of each possible organization of a multiple classifier system 
are not yet clear. How to achieve an optimal organization is 
a challenging open problem. 

Dynamic selection of classifiers is likely to be domain 
specific. Descriptors of input conditions are needed that can 
categorize the input with respect to their responses to each 
classifier. Such conditions may include features in the input 
patterns as well as characteristics of the classifier outputs. 

The performance of a multiple classifier system, though it 
can be better than those of each individual, will reach an upper 
limit if there are cases where none of the classifiers' decision 
is sufficiently close to correct. A question then arises: Is it 
possible to systematically create a multiple classifier system 
for a given problem, so that for each possible input pattern 
there exists one or a combination of several classifiers that 
can correctly identify its true class? If this could be done, a 
perfect solution could be obtained for any given recognition 
problem. Recently, the studies by Kleinberg [22]-[24] suggest 
a promising approach toward this goal. 
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