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Abstract 

A general method is introduced for separating points in multidimensional spaces through 
the use of stochastic processes. This technique is called stochastic discrimination. 

Keywords: Pattern recognition, complexity theory. 

1. Introduction 

In this paper, we will introduce a general method for separating points in 
multidimensional spaces through the use of discrete stochastic processes. This 
technique of stochastic discrimination is extremely general, and has application in 
diverse areas ranging from pattern recognition and artificial learning where, for 
example, it may "train itself" to distinguish structures which contain a target 
pattern from structures which do not, to computational complexity theory where 
it might be used to identify edges which comprise an optimal tour through a given 
graph. 

The method functions, basically, by taking as input poor solutions to a 
problem at hand, and using them, in concert, to create good solutions. In fact, the 
set of poor solutions is the only access the method is ever given to a problem at 
hand, yet we can rigorously prove that given an appropriate set of such poor 
solutions, stochastic discrimination will provide arbitrarily good solutions within 
very short (low-degree polynomial) periods of time. 

It should be noted here tha~ the notion of appropriate as applied to sets of 
poor solutions is concerned with the degree of dispersion of the solutions in the 
set rather than with the degree of goodness of them - the technique will create a 
solution which is arbitrarily close to perfection from input  solutions none of 
which is better than e away from the rating expected of a random guess provided 
only that the input solutions are different from one another. Of course, the concept 
of dispersion must be made mathematically precise, but  on an intuitive level, one 
might consider this: if one were presented again and again with the same poor 
solution to a problem, he would have little chance of ever creating anything better 
than that poor solution - on the other hand, if he were presented again and again 
with equally poor but different solutions to the problem, he would at least be 
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getting diverse information; and in this case, stochastic discrimination will enable 
him to create from this diverse information an essentially perfect solution. 

In order to get a sense for just  how powerful the technique is, we might 
consider an example based on the well-known parable about  producing 
Shakespeare's play Hamlet  from a roomful of monkeys sitting at typewriters. § 
For  definiteness sake, let us assume that Hamlet  (written in binary) consists of a 
string of O's and l 's  of length s, that our monkeys are sitting at typewriters 
capable only of printing the digits 0 or 1, and that every time one of them 
produces a string of length s, his work is graded and passed on to us (without any 
indication of what the correct digits are or even of which digits he got right or 
wrong). Then as we all know, the probability that any one of these graded 
attempts gets a mark of 100 percent is exponentially small, and hence, given any 
collection of such attempts whose size is polynomial in s, the probability that a 
perfect string sits in the collection is exponentially small. What  we show, 
however, is that through the use of stochastic discrimination, this situation can be 
completely reversed; within a low-degree polynomial amount  of time, we can take 
any such collection of graded attempts at Hamlet  and use them to produce a new 
collection of attempts, and the probability that a perfect string does not sit in this 
new collection is exponentially small. Describing this situation from a slightly 
different point of view, and with somewhat more specificity, we will show that 
given any (16s 4 - 8s3)-many random papers from our roomful  of monkeys, we 
can construct a string of O's and l ' s  containing less than 1 expected error total in 
the entire play. And since it is easy to see that for large enough s, the probability 
that any one of our (16s 4 -  8s3)-many random papers is graded better than e is 
arbitrarily small, it is clear that our method here is not based on synthesizing 
something from better and better guesses. 

Of course, this example is of little practical importance; however, it is appeal- 
ing from the point of view of complexity theory since we almost seem to be 
accomplishing an NP task within P time. This is more fully explored when we 
consider the application of stochastic discrimination to the traveling salesman 
problem. 

There is an equally appealing characteristic of our approach which is of 
interest in the field of pat tern recognition. Namely, given training data for a 
solvable pattern recognition problem, if we generate sufficiently "coarse" guesses, 
then solutions to the problem built from these guesses by stochastic discrimina- 
tion, although their complexity may increase enormously as they converge to 

+ This example, in and of itself, has very little to do with the application of stochastic discrimina- 
tion to either complexity theory or pattern recognition. In either of these areas, the problems we 
wish to solve are not random in nature, and some care is needed in producing the so-called "set 
of poor solutions". However, the mathematical analogue of this example, which we will discuss 
in some detail later in the paper, contains the application-independent essence of stochastic 
discrimination. As such, we feel that this introductory discussion provides worthwhile insight. 
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perfection, will remain stable as one measures their accuracy on new data not 
present in the training set. Thus the traditional dilemma, whereby in order to fit 
the training data well one tends to build large, training set specific, models which 
are of little use in actual practice, can be avoided entirely - through the use of 
stochastic discrimination, one can build large models which fit the training data 
but which are not specific to it. 

This paper is comprised, essentially, of two parts. In the first, we describe the 
method, provide its theoretical underpinnings, and prove several theorems which 
establish the power and generality of the technique. In the second, we consider a 
specific application of stochastic discrimination to a very general class of prob- 
lem, but in a context where we have control over the input which we may provide 
to the technique. We show here how the method should operate in theory. 

We refer the reader to two additional papers for discussion of the application 
of stochastic discrimination to well-known areas of practical importance. In [1], 
we consider an application involving visual pattern recognition, specifically, the 
problem of distinguishing among handwritten digits. Here the major difficulty is 
in supplying input which is sufficiently dispersed so as to provide what is known 
as a uniform cover of our pattern space; however, we can do well enough that the 
separation provided by stochastic discrimination is significantly better than that 
achieved by conventional means. And in [2], we consider an application to 
computational complexity theory, specifically, toward deriving a (polynomially 
timed) solution to the traveling salesman problem. Here the wrinkle is not  with 
lack of uniform cover, but rather with accurately rating proposed sets of edges in 
order to determine if a given set is worthy of being provided as input to the 
process. Needless to say, we do not prove here that P -- NP; however, we present 
what we consider to be a general technique, which operates in (low-degree) 
polynomial time, for attacking arbitrary NP problems. 

1.1. AN OVERVIEW 

The class of problem we are considering is one characterized by the following 
three factors: 
(a) we are trying to find a perfect solution to the problem; 
(b) we can quickly (polynomial time) determine if a given candidate is a perfect 

solution to the problem; 
(c) if we simply make "unintelligent", independent  guesses, then within any 

polynomial amount of time, the chance that any of the guesses to that point  
in time is a perfect solution is exponentially small. 

The virtue of the independent guess approach is that it can be carried out in 
parallel - since there is no feedback or other interaction between the guesses they 
can all be generated simultaneously on a very wide machine. However, the chance 
of success, being exponentially small, renders the approach worthless. As a result, 
traditional attack on such problems has been through analysis of the underlying 
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data - a pattern recognition person might study numerical characteristics of 
digitized images in formulating sets of rules to distinguish among them, just as 
complexity theorists might study the spatial characteristics of grid graphs in 
looking for optimal tours. And although such traditional attack might well 
include the generation and testing of hypotheses, there is always feedback 
involved, the guesswork is intelligent, so to speak, and the entire process is 
fundamentally sequential instead of parallel. 

With stochastic discrimination, the traditional approach could be set aside 
entirely. The notion of training data as something to "learn from" could be 
completely avoided, and we will show that (c) above could be replaced with 
(c')  if we simply make "unintelligent", independent guesses (in parallel, if 

possible) and feed them to stochastic discrimination, then derivative solutions 
are generated, and within some polynomial amount of time, the chance that 
none of these derivative solutions is an instance of what we are looking for is 
exponentially small. 

Thus from a conceptual point of view the traditional approach of learning 
from training data is replaced with a closed 2-step process, namely, make a 
sufficient number of independent guesses, and then stochastically discriminate. And 
what is remarkable is that we can rigorously prove that this seemingly "unintelli- 
gent" approach always succeeds, and that it succeeds extremely quickly. 

In its most general form, the technique operates as follows: 
Given a space containing points of two sorts * (our goal is to come up with an 
accurate solution to the discrimination problem, namely, to come up with a 
rule for accurately discriminating points of one sort from points of the other), 
we associate with each point q in the space a discrete stochastic process { M, q }. 
For each i and q, the random variable M q is a function of the set of/-element 
sets of (possible) solutions, and so, for any q, by applying the variables in the 
process { M q } to larger and larger sets of proposed solutions, we are able to 
associate with q a sequence of reals (aq}. Then the following two surprising 
phenomena occur: (a) each of the sequences { a q } converges, and it converges 
to only one of two possible (distinct) values; and all sequences associated with 
points of one sort converge to one of these values, and all sequences associated 
with points of the other sort converge to the other of these values; (b) there exists a 
single polynomial function which governs the rate of convergence of all of 
these sequences; and, specifically, one can determine within a polynomial 
amount of time, for any given point q, just which of the two possible values ( a q }, 
with high probability, converges to. Thus, within a polynomial amount of time 
(of looking at possible solutions, inaccurate though they all may be), we have 
come up with a solution which, with high probability, is perfect. 

* For purely pedagogical reasons, this paper will deal only with binary discrimination problems. 
With relatively little change, however, the technique could be recast in such a way as to enable it 
to deal with arbitrary n-ary discrimination problems. 
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Fig. 1. Graphical representation of the dynamics of generating "stochastic solutions". 

In effect, one of these accurate solutions generated by this technique (solutions 
which will later be referred to as stochastic algorithms) consists of a sufficiently 
large set, S, of "possible solutions" (of size n, say) along with the set of random 
variables M q. A given structure q will then be classified by this stochastic 
algorithm as being of type I (type II) if the value of M q on S is "close" to the 
type I (type II) limit point. If we consider "possible solutions" as items appearing 
over time, we may pictorially view the dynamics of all of this as in fig. la, and the 
classification given by any stochastic algorithm based on all those "possible 
solutions" generated by any time beyond that indicated by the horizontal dotted 
line would be as depicted in fig. lb. 

2. The underlying theory 

In the realm of activity which is generally construed as "intelligent", pattern 
recognition problems clearly occupy a position of central importance. Many areas 
of application for stochastic discrimination are obvious instances of such prob- 
lems. But since we will also be able to cast our subsequent work in complexity 
theory in terms of pattern recognition (learning, for example, to recognize which 
edges make up an optimal tour in a given grid graph), we will use pattern 
recognition as the vehicle through which to present stochastic discrimination. 

2.1. THE GENERIC PATTERN RECOGNITION PROBLEM 

Our entity engaged in "learning" is trying to formulate rules for distinguishing 
one set of objects (the "examples") from another set of objects (the "nonexam- 
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pies"). For maximal generality, the paradigm is constructed as follows: 
(a) All objects (the "examples" as well as the "nonexamples")  are of some fixed 

structure type. In terms of pattern recognition, the "examples" are those 
structures which contain a target pattern, and the "nonexamples"  are those 
structures which do not. 

(b) The learning entity has access to a training set of objects. Each object in this 
set is marked as being an "example" (henceforth known as an E-structure) or 
as being a "nonexample"  (N-structure). 

(c) The learning entity (henceforth, the LE) has access to a test set of objects. 
The objects in this set are not marked as E-structures or N-structures, but the 
LE does have access to an algorithm (which is t imed polynomially in the size 
of the test set and the complexity of the structure type) which will grade the 
accuracy of any set of rules the LE may come up with. In other words, given a 
set of rules for deciding whether a particular structure is of type E or N, each 
structure in the test set can be evaluated by these rules and as such be 
categorized as an E or an N. The grading algorithm would simply return a 
value indicating how accurate the rules turned out to be in their categoriza- 
tions. It is interesting to note that since the LE is never given the "answers to 
the questions in the test set" and is only given access to the grading algorithm 
as an oracle, the same test set can be used more than once in evaluating sets 
of rules. In other words, we have set things up so that the LE can test itself 
whenever it chooses. 

(d) Since it would be a simple matter  for an LE to rapidly code all information in 
the training set, the degree of accuracy of any set of rules considered as a 
solution to the problem at hand will only be measured through its perfor- 
mance on the test set - how well it may  do on the training set is of  no interest 
to us. 

Of course, there are many different methods one could use to rate the accuracy 
of a set of  rules at solving a problem, and in some sense, our work here is 
independent  of any particular choice. However, for definiteness sake, let us settle 
on certain specifics. 
(a) Given a set of rules (henceforth referred to as a separation algorithm) let us 

view that algorithm as assigning the value 1 to each structure it feels is an 
E-structure, and a 0 to each structure it feels is an N-structure. Notationally, 
C(q) = 1 (C(q) = 0) should be viewed as the separation algorithm C assert- 
ing that q is an E-structure (N-structure). 

(b) In light of (a) above, let us define two real-valued (rating) functions, r E and 
r i as follows: for any algorithm C, rE(C ) equals the fraction of the total 
number  of E-structures in the test set to which C assigns the value 1, and 
r y ( C )  equals the fraction of the total number  of N-structures in the test set to 
which C assigns the value 1. Symbolically, if s denotes the total number  of 
E-structures in the test set and t denotes the total number  of N-structures in 
the test set, we have 
re(C ) = [ (q :  q is an E-structure in the test set and C(q)  = 1} [/s  
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and 

rN(C ) = [{ q: q is an N-structure in the test set and C(q)  = 1) [/t .  

For example, if C were an algorithm which simply assigned to every structure 
the value 1, then we would have rE(C ) = 1 and r~(C)  = 1. Similarly, if C 
were an algorithm which assigned a 0 to every structure, we would have 
r~(C) = 0 and r~(C) = 0. Needless to say, these trivial algorithms are of no 
interest. On the other hand, if C were an algorithm such that r E ( C )  = 1 and 
rN(C ) = 0, then C is a perfect classifier for our given problem. 

(c) It is sometimes convenient to combine the rating functions r E and rr~ into a 
single function d. Namely, given an algorithm C, let us simply consider the 
difference d(C) = rr~(C ) - rr~(C). Without loss of generality, we can assume 
that for all algorithms considered, this difference is always nonnegative, for, if 
necessary, we can replace C with I - C. Clearly, the closer d(C) lies to 1, the 
better the algorithm C is at the classification problem. Indeed, each of the 
trivial algorithms mentioned above has a difference of 0, and the perfect 
classifier has a difference of 1. 

In K Square technical report 04.0288 [3], a complete theory is developed 
concerning the generation of separation algorithms through "s tudy" of training 
sets. None of that aspect of learning will be discussed here, and in fact, this paper 
will concern itself not at all with training sets. Rather, we will assume, as a given, 
the ability to routinely achieve at least some minimal degree of success at 
developing separation algorithms (through such analysis of known data, through 
sheer guessing, or through any other means), and will parlay this ability into the 
creation of an essentially perfect separation algorithm. 

In effect, the method we will develop here, stochastic discrimination, is a 
process which is designed to be carried out at a point in the development of 
knowledge well beyond where one usually expects to find out anything new. In 
other words, if we view learning as a pipeline process (fig. 2a) whose final 
component  is an evaluation stage for separation algorithms which come down the 
line, we will now take the output  from this evaluation stage and pipe it into our 
stochastic discrimination stage, a stage which will produce further separation 
algorithms (fig. 2b). Something seemingly remarkable will happen here, for even 
if each of the separation algorithms piped into our stochastic discrimination stage 
is of low rating, the process will be able to quickly construct an essentially perfect 
separation algorithm from them. 

In order to get some sense for what we will be dealing with, let us consider a 
trivial instance of a rather general example. Suppose that our structure type is a 
simple one-field record consisting of a single nonnegative integer less than 2s, 
and that the E and N records of the test set consist of two disjoint s-clement sets 
of structures. So far as learning is concerned, let us make the conventional 
components of the pipeline trivial in that we will assume that it is a random 
process which generates separation algorithms, and that these are then fed to a 
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Fig. 2. The "pipeline" process of learning, (a) without and (b) with stochastic discrimination. 

stage which evaluates them as described above. It is the stream of randomly 
generated, evaluated separation algorithms which is piped to our stochastic 
discrimination stage, and let us say that we are interested in developing a 
separation algorithm from this stream which is expected to make no more than 
one error, total, at the task of identifying E-structures as E-structures and 
N-structures as N-structures; that is, that we are interested in developing a 
separation algorithm with an expected d-rating of at least 1 - ( l / s ) .  

Of course, there is a rather obvious route to take here - one need only sit at the 
stream checking the rating of each algorithm which passes by and simply wait 
until one with a rating at least 1 -  ( l / s )  passes by. However, given that there 
exist effectively 

4 �9 
many algorithms, and that of these, only 
2 s + l  
many are rated at 1 - ( l / s )  or better, one could expect to spend an amount of 
time of order exponential in s waiting for one to appear. 

Our approach is quite different. We will present an explicit 4th degree 
polynomial, p(s),  so that within an amount of time of order p(s),  the stochastic 
discrimination stage of our learning pipeline will produce a separation algorithm 
with an expected d-rating of at least 1 - ( l / s ) .  

We will discuss this example in some detail later in this paper, but we might 
point out one further feature of interest. For any real number e greater than 0, let 
P~ represent the probability that during the stochastic discrimination stage, the 
stream ever presents the stage with a separation algorithm with a d-rating greater 
than e. Then we will prove that for any e greater than 0, as s increases without 
bound, P~ approaches 0. In other words, even though we are able to develop an 
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essentially perfect separation algorithm through analysis of a stream of (lesser) 
algorithms, the most likely event is that, in fact, throughout the entire process, the 
stream never shows us anything much beyond the trivial. Thus it appears as if we 
are making something out of nothing in developing these algorithms. 

2.2. UNIFORM COVER 

In the section immediately following this one, we will be defining random 
variables associated with structures, and will be interested in proving that they all 
share the same probability density function. The technical device we will use 
concerns a notion of "uniform cover" as applied to sets of algorithms. That is our 
focus for now. 

On an intuitive level, we would like to develop some sense for what it means 
for a set of algorithms to cover the set of structures so that among algorithms in 
the set with given r E and rN-ratings, the number giving the value 1 to a particular 
structure equals the number giving the value 1 to any other structure of the same 
type (E or N). Clearly, small sets of algorithms providing such a uniform cover 
are difficult, if not impossible, to construct. For example, a set consisting of two 
separation algorithms each of which has an rE-rating equal to some real number  x 
strictly between 0.5 and 1 could not possibly provide an unbiased cover since 
some proper subset of the collection of E-structures would necessarily be rated 1 
by both algorithms in the set. 

However, as the number of separation algorithms considered together in- 
creases, the notion of uniform cover does take on practical meaning. If A is a 
given set of algorithms, and x and y are two given real numbers, let us define 
Axy to  be 

{ C ~ A :  rE(C ) = x  and r u ( C  ) = y } .  

We can then define A to be E-uniform if given any two E-structures p and q, and 
any two real numbers x and y, 

E C ( p ) =  • C(q). 
CEAxy CEAxy 

Similarly, we have a notion of N-uniform using the same definition with 
"E-structures" replaced with "N-structures". A set of selection algorithms is said 
to be a uniform cover, if it is both E-uniform and N-uniform. 

In order to approach the problem of existence of such sets of algorithms, we 
must first look at another, purely combinatorial, view of the notion of uniform 
cover. A given separation algorithm C has associated with it a specific set of 
E-structures, E c, namely, those E-structures to which C assigns a value of 1. 
Similarly, it has an associated set of N-structures, N o -namely those N-structures 
to which C assigns a value of 1. Indeed, since we will never be getting involved 
with the internal details of any particular algorithm (other than the detail that it 
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operates in polynomial time), any two algorithms C and D such that E c = E D 
and N c = N D will be viewed, for the purposes of this paper, as being identical. 
Thus we will feel free to equate algorithms with pairs of sets of structures, and 
specifically, if X and Y are the two sets equated with an algorithm C, then if i ( j)  
is the size of the intersection of X(Y) with the set of all E-structures (N-struc- 
tures), then rE(C ) (rN(C)) is equal to i /s  ( j / t ) .  

Using this duality between algorithms and sets, let us consider any pair of 
nonnegative integers i less than or equal to s and j less than or equal to t, let us 
define x to be i /s and y to be j / t ,  and let us consider the set Qxe of all 
algorithms C - ( E  o Nc) such that E c contains i-many elements and N c con- 
tains j -many dements.  Then we must have that for any particular E-structure q, 

( s -  1)! ) t! ( ) C(q)  = (~ 1 j ! ( t - - j ) !  ' C~Oxy 

and for any particular N-structure q, 

~, C(q)= ( j -  1 ( t -  1)! s! 
1 ) ( : ) = ( ( j - - ] ~ . ( ~ - - j ) , ) ( i , ( s - - i , , ) .  (1) C~Qxy 

Naturally, this shows that the set of all algorithms constitutes a uniform cover, 
but given the nature of our notion of uniform cover, we have also, clearly, 
established that for any possible set T of d-ratings, the set of all separation 
algorithms C such that d(C) is a member of T is a uniform cover. 

2.3. THE BASE VARIABLES 

Although one tends to think of the application of statistics in contexts such as 
this as involving sampling within the population of structures, the basis of our 
approach will involve sampling within the population of separation algorithms. 
Indeed, our key method for attacking the problem will make use of random 
variables associated with such sampling. 

If one were to simply "guess" at separation algorithms for our problem one 
would obviously produce some algorithms which were better and some which 
were worse. Needless to say, the higher the d-ratings one required, the less 
frequently one would expect to find acceptable algorithms through guessing. For 
example, in the situation discussed above, it is only after an exponential amount  
of time that one might expect to find an algorithm with a d-rating greater than or 
equal to 1 - ( l / s ) .  However, it is also clear that if we lower our sights, and rather 
than look for algorithms C such that d(C) >~ 1 - ( l / s ) ,  just look for algorithms 
C such that d(C) > 0, we can expect to see them regularly. 

We will attack this question in some detail later in section 3, but until further 
notice, let us assume that we have access to some polynomially (in s, t, and 
structure complexity) timed process for producing separation algorithms C whose 
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degree of goodness is not only greater than 0 but is bounded away from 0 by 
some positive real number 1/g.  In other words, we will assume that there exists a 
real number 1/~, > 0 and a polynorniaUy timed process for producing a stream of 
rated algorithms sampling the population of all algorithms C such that d(C) > 
1/I,. (The notion of creating such a process is a most interesting area in its own 
right, and, as mentioned above, it is the topic discussed in [3]. And  while, in some 
sense, it involves the half of the learning paradigm concerned with "s tudy" of the 
training set, later in this paper we will return to our example, introduced earlier, 
which turns out to satisfy this assumption independent  of any consideration of 
training set. The example is of special interest since, despite its simplicity, its 
natural solution appears to require an exponential (or at least NP) amount  of 
time. We will produce a solution within an amount  of time polynomial in s.) 

Let us denote by 5" the set of all separation algorithms C such that d(C) > 1/1,. 
Then if we consider 5 a, under the counting measure, as a sample space, we can 
associate with any structure q of our separation problem the random variable X q, 
which, at an element C of ~a takes the value 

C(q) / rE(C) .  

LEMMA 1 

If p and q are two structures of the same category (E or N), then X p and X q 
have the same probability density functions. 

Proof 
Let us introduce the following notation: if r is a given real number,  then ( r )  

denotes the least integer greater than r, and [r] denotes the greatest integer less 
than r. Then using our analysis above concerning uniform cover, and in particu- 
lar, in light of eqs. (0) and (1), it follows that for any E-structure q, the number  of 
points where X q takes the value 0 is 

[t(t/s--l/~,)](~ s - - a  )(~) 

i = ( s / v )  j=O i ' 

and for every i > s/v ,  the number of points where X q takes the value s / i  is 

[tO~s- l/p)] 

j=0 i - - 1  " 

Similarly, for any N-structure q, the number of points where X q takes the value 0 
is 

= ( ~ / ~ )  j = o J ' 
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and for every i > sly, the number of points where X q takes the value s/i is 
[ t ( i / s  - l /p)]  

( ~ ) ( ~ 1  

j = 0  1)" 

Since none of these expressions involves q, the lemma is proved. [] 

Now. that we know that random variables associated with structures of a 
particular category all have the same probability density function, we know that 
there are at most two possible values for expectations of such variables. In point 
of fact, there are exactly two values, and this will be extremely important  for our 
subsequent work. Before we prove this, however, let us explicitly state (without 
proof) a trivial proposition which we will need both here and later in this paper. 

PROPOSITION 
Let s be a finite sample space with counting measure v, and let K be a 

partition of &r. Then if X is a random variable defined on s and if, for each 
subset ~ of &r in K, X ~" denotes the restriction of X to OR, then 

v(oR) 

We are now in a position to prove that E-structure random variables and 
N-structure random variables have distinct expectations. 

LEMMA 2 
If q is an E-structure, then E(X q) = 1. If q is an N-structure, then 

E(X q) < 1 - ( l / p ) .  

Proof 
Let i < s and j < t satisfy i/s - j / t  > l / v ,  and let ~ denote the set consisting 

of all algorithms in 5 a with an r~-rating of i/s and an r~-rating of j/t. Then we 
immediately see that for any E-structure q, the expectation of the variable X q 
restricted to the sample space ~ is 

- 1  ( s -  1)! 
( J ) ( i - l S - 1 ) ( / )  . . . .  (fl(;v"J)' )( (i--l~'(sZi)' )(s) (J)(:) 1. 

( ~ ) ( : )  (j,(;v.j), )(i,(sSV_.___i), ) (~)(:) 

Thus by the proposition above, for any E-structure q, the expectation of X q is 
1. The situation for N-structure variables is different. For if q is an N-structure, 
and ~ denotes the set consisting of all algorithms in 5 ~ with an r~-rating of i/s 
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and an rN-rating of j / t ,  we immediately see that for any N-structure q, the 
expectation of the variable X q restricted to the sample space ~ is 

t s js s! ( t - 1 ) !  ) ( s ) ( j ) ( i ) ( ~ - )  

(~)(ii)~(I()  t S! ~ l! = t s = js 
( i ! ( s - - i ) ! ) ( j ! ( t - j ) ! )  ( j ) ( i )  (-ff)" 

Since every C in 6 ~ has the property that d(C) > 1/v,  we must  have that 

i j 1 
> 

s t v '  

and so, 

J S < l _ S  
it iv " 

Since i _< s, we can say that 

Js <1_! .  
i t  p 

We may thus conclude, by the proposition above, that for any N-structure q, the 
expectation of X q is less than 1 - 1/p.  [] 

2.4. THE STOCHASTIC PROCESS 

The way stochastic discrimination operates is as follows: 
Suppose q is a given pattern structure. Then we will undertake a sequence of 
independent trials over our sample space, and for each i, let us denote by X q 
the random variable corresponding to X q associated with the i th trial. Further- 
more, for each n, let M q denote the random variable 

Then by the Law of Large Numbers,  as n increases without bound,  the 
probability that M~ q lies close to the expectation of X q approaches 1. But since 
the expectation of X q is 1 for E-structures q and is less than 1 -  ( l / p )  for 
N-structures q, we should be able to tell, by taking n "large enough" just 
which of the two possible expectations M~ is, with "high" probability, "close 
to", and hence, should be able to tell, with "high" probability, whether q is an 
E-structure or an N-structure. In practice, if we simply take a random sample 
with replacement, . t ,  of "large enough" size n, then J can be viewed as 
representing the n-many independent random variables X17, X~, . . . ,  X~, and 
thus the sample mean can be viewed as representing Mq,. And by the Law of 
Large Numbers, if that sample mean were within 1/21, of 1, we couM conclude 
with "high" probability that q was an E-structure, and if that sample mean were 
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not within 1/2p of 1, we could conclude with "high" probabifity that q was an 
N-structure. Of course, all of this is heavily dependent on just what constitutes 
"large enough" as applied to sample size, but we will provide an explicit 
polynomial function such that if n is larger than the bound provided by this 
function, then that n is "large enough" to make the algorithm work. 
There are different levels of sophistication possible in precisely formulating the 

algorithm described above. These levels are somewhat related to just how 
sophisticated a version of the law of large numbers one chooses to use. An initial 
result follows with a simple use of Chebyshev's inequality: 

LEMMA 3 

There exists a polynomial P(x, y, z) such that for any positive h, k, and s, if 
m>_P(h, k, s), 

Pr(IMqm - E (xq )  I < l / k )  > 1 - ( l / h ) .  

Proof 
Let E ( X  q) and 0 2 denote the mean and variance, respectively, of X q. Then 

E( X q) and o2/m are  the mean and variance, respectively of Mm q. By Chebyshev's 
inequality, 

o2k 2 
e r ( lM  q -  E( Xq)l > l / k )  < ---~-, 

and so, 

o2k 2 
Pr(]M q - E ( x q ) l  < l / k )  > 1 - 

Since the range of X q is contained in [0, s], o < s. Thus if we let 

P(x,  y, z)=a/xy2z2, 

then for any m > P( h, k, s), 

k20 2 1 - - < .  
m - h '  

and so 

?r(IM --e(Xq)l< l/k)> 1-(1/h). [] 
To flesh all of this out somewhat, let us return to our example considered 

earlier where pattern structures consist of single-field records containing non- 
negative integers less than 2s. In a later section, this example will be covered in 
detail, and in particular, we will set things up so that the expectations of 
E-structure base random variables and N-structure base random variables lie 
further than 1 / ( 2 ~ - s - 1 )  apart. Thus by lemma 3, if n is larger than 
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P(2s,  2 2 r  s ) =  16s 4 -  8s 3, given any structure q, if we were to simply 
calculate the mean of any random sample with replacement having size n viewed 
as representing M q, then if that mean were within 1 / (2  2 V ~ - 1 )  of 1 the 
likelihood that q was not an E-structure would be less than 1 in 2s, and similarly, 
if the mean were within 1 / (2  2r ) of 1, the likelihood that q was an 
N-structure would be less than 1 in 2s. In other words, we have just described a 
separation algorithm for our problem which operates in polynomial time, and which 
has an expected d-rating greater than 1 - ( l / s ) .  

2.5. THE SEPARATING DENSITY FUNCTIONS 

Let us look at the dynamics of the situation. For  any specific sample size, n, 
we have two probability density functions, one associated with E-structures (i.e., 
the density function for M q for any E-structure q), and the other associated with 
N-structures (i.e., the density function for M q for any N-structure q). The means 
of these functions are some fixed distance, apart from one another, and by the 
Central Limit Theorem, for large enough n, the density functions are essentially 
normal (see fig. 3). 

But as sample size (n) increases, we also have that the variances of the density 
functions approach 0, and in this fact lies the reason stochastic discrimination 
works. For  this means that as sample size increases, the two density functions 
separate from one another eventually to the point where their overlap is negligible 
(fig. 4). 

As a result, if we are dealing with a large enough sample, given the value of one 
of the density functions on a (random) point taken from their common domains, 
it is quite clear which of the functions (the E-structure function or the N-structure 
function) was used to produce the value. 

N-structurepdf ~ ~ E.slructurelxlf 

Fig. 3. Two overlapping pdf's with separated means. 
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Fig. 4. With increasing sample size n the overlap of the pdf's becomes negligible. 

Thus, if we define the separating threshold, t, to be the mean of the means of 
the E-structure and N-structure density functions, given a (random) sequence 
from our sample space of separation algorithms, we have, for each n, an instance 
of the stochastic algorithm, SA,, which simply calls a structure q an E-structure 
if the value of M q on the length-n initial segment of the sequence is greater than 
t. And  by the lemma above, the expected accuracy of SA, will be greater than 
1 - ( l / h )  if n is taken larger than some polynomial function of h (and problem 
complexity). 

2.6. THE DUALITY LEMMA 

In the previous subsection, we introduced what might be called the stochastic 
algorithm for separating points in a space, and we discussed the performance of 
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this algorithm in terms of "expected d-rating" for large samples. We now wish to 
formulate a precise picture of the actual d-rating of stochastic algorithms. This 
will enable us to prove a surprising, and extremely powerful result concerning the 
stability of stochastic algorithms as one moves from performance on training set 
to performance on test set to performance in field use. Basically, we will prove 
that if the algorithms in the sample from which a stochastic algorithm is built are 
all stable in their performance in going from training data to test data, then the 
stochastic algorithm will be stable as well. And since, given some care in 
constructing training data, it is easy to find stable (though, perhaps, poor) 
separation algorithms, the practical implications of this are enormous. And  what 
is surprising, is that we have here a method for building arbitrarily complex 
solutions to problems without the usual worries of training-set specificity and the 
inevitable instability it creates. 

Given a fixed structure q, we have been considering the random variable M q, 
and have viewed it as being defined on an / - fo ld  product  of spaces of separation 
algorithms. But if we were to fix a member of this i-fold product  of spaces of 
separation algorithms, M q could alternatively be viewed as a random variable 
defined on the space of structures. And by casting things in this light, we have a 
mechanism for precisely evaluating the d-rating of the stochastic algorithm built 
from that (fixed) member of the/- fold  product. For let R E (RN) denote M q as a 
function of q defined on the sample space of E-structures (N-structures). Then it 
is immediate, given the definitions of r E and r~q, that the rE-rating (rN-rating) of 
the derived stochastic algorithm is just the area under the density function of 
RE(Rrq ) to the right of the separating threshold, and hence, the d-rating of the 
derived stochastic algorithm is just the area to the right of the separating 

. . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  ~ . . . . . .  ~  . . . .  , . _  

E-s~c~e ~ f  

. . . . . .  

separating threshold 

Fig. 5. Illustration of the use of the separating threshold. 
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threshold bounded from above by the density function of R E and from below by 
the density function of R N (see fig. 5). 

In order to make use of these observations, we must come up with usable 
descriptions of the functions R E and R N. This is the role of the duality lemma. 

We begin with some notation. Given i < s and j < t, let 

{ J) i and rN(C)  = 7 6~,j =d/ C: rE(C ) = s 

Fix some integer n > 0 and sequence (al ,  bl), (a2, bz ) , . . . , ( an ,  bn) such that for 
each i, 

a i b, 1 
s t p'  

and let us define .~ to be 
n 

YI 
i=1 

Let ~ denote the space of all structures, and let us denote by M,  the map from 
the product ~ x ~  into the reals which at any point (q, (Ca,C2 . . . .  , Cn) ) takes the 
value 

M q  ( { c l  , C2  , . . . , Cn ) ) . 

LEMMA 4 

Let ~ be either the set of all E-structures or the set of all N-structures, and fix 
points q in ~/" and C in .~. Let Yq denote the restriction of M n to (q  } • and 
let Z c denote the restriction of M n to ~ • (C}. Then Yo and Z c have the same 
pdf's. 

Proof 
Consider a possible value in the range of M n. It is of the form 

n 

S E -1  - -  ~ / ( a , )  , 
n 

where, for each i, e i is either 0 or 1. What is the probability that Yq takes this 
value? Clearly the probability that e i is equal to 1, that is, that s/a,  gets 
contributed to the sum, is just the probability that q is accepted by an algorithm 
in SP~,b. If ~ is equal to ~, this probability is 

(a,--- 1)-~-(-~-a;), ) ( - ~  ) ( -~  ) ( b ; ) ( a , ) ( - ~ )  

t s t! s! t s 
(b,)(  ai ) ( b g , ( t - b i ) , ) ( a , , ( s - S - a , ) , )  ( b , ) ( a , )  

ai 
S 
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Thus the probability that Yq takes the value 
n 

s E e,(a,) -1 
n 

i=1  

is 

n a i  

I-I {ei(-~ ) + ( 1 -  e i ) ( 1 -  S ) ) = s - n  f i  (eiai "t- ( 1 -  e i ) ( s - a , ) ) .  
i=1  i = l  

By similar reasoning, if ~ is equal to Jg', the probability that Yq takes the value 

n 
S E e , ( a , )  - 1  
n 

l = l  

is 

s - n  l - I  ( ,bi + (1 - - b , ) ) .  

We now consider the variable Z c. Suppose ~ is equal to d ~ Then since the i th 
coordinate of C has an r~-rating of ai/s, the probability that e~ equals 1 in the 
sum above is aJs.  Thus arguing as above, the probability that Z c takes the value 

n 
S E e i ( a i )  - 1  
n 

l = l  

is 

s - n V I  (eia , + ( 1 -  e i ) ( s -  a,)) .  
i=1  

Using rN-ratings in place of rE-ratings, if ~ were equal to ~f', the probability 
that Zc takes the value 

S 
n E e,(ai) -1 

t = l  

would be 
n 

s-n 1-I (e, bi + (1 - e,)(s - b,)). 
i=1  

[] 

Just how does this lemma prove the stability of stochastic algorithms? Specifi- 
cally, suppose that we have a given training set TR, a given test set TE, and that 
our stochastic algorithm is built from n-many stable separation algorithms, that 
is, from separation algorithms which have the same r E and rN-ratings when 
evaluated in either TR or TE. Let a 1, a 2 . . . . .  a,  be the sequence of such 
r~-ratings for these separation algorithms, and let bl, bE,...  , b n be the sequence of 
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rN-ratings. Then it is clear that for any E-structure q (whether it is in TR or TE), 
the pdf of Yq (in the notation of lemma 4) depends only on the sequence (a ,  }. 
Thus by lemma 4, the random variable Z c defined on the E-structures in TR has 
the same pdf as the random variable Z c defined on the E-structures in TE. But 
the re-rating of the stochastic algorithm is equal to the area under this pdf to the 
right of the separating threshold, and so we have shown that the rE-rating of the 
stochastic algorithm is the same whether it is evaluated in TR or in TE. Arguing 
similarly with N-structure and the sequence { b i }, we see that the rN-rating of the 
stochastic algorithm is the same whether it is evaluated in TR or TE. Thus the 
stochastic algorithm is stable. 

2.7. A REMARK CONCERNING CONVERGENCE TO NORMALITY 

In order for the calculation of d-ratings of stochastic algorithms using the 
method implied by the previous section to have practical value, we must be able 
to explicitly work with relevant pdf's. Of course, the duality lemma presents us 
with a complete description of them, but it is not hard to see that the form they 
take is extremely difficult to work with. Fortunately, we have central limit 
theorems, and as a result, these distributions approach normality. The question 
for us, however, concerns just how quickly the distributions approach normality. 
For unless things happen polynomially fast, the normal approximations are of 
little practical use. 

In this section, we prove that convergence does, indeed, happen polynomially 
fast; however, we will make no attempt to analyze the specific distributions at 
hand, nor will we make any attempt to get the sharpest estimates possible. We are 
simply interested in demonstrating the polynomial nature of the convergence and so 
will rely on general limit theorems. (A detailed analysis of the normal approxima- 
tions to our specific pdf's is saved for a later work.) 

The general tool we will use here is the so called Cramer-Berry-Esseen 
theorem: 

THEOREM 
If X 1, X 2 . . . .  , X m are independent, identically distributed random variables 

with expectation 0, variance 0 2, and finite third moment, and if S,, represents the 
sum of the X,, then 

IPr( Sm X ) -  ~o(X)I < KcBEE( 'X1 .3) 
_< _ ( 2 )  

for some constant Kc~ E less than 3. 

For a start, our variables do not have expectation 0, and so we must use the 
above theorem with E( IX 1 13) replaced with E( IX 1 -/~13) (where /~ is the 
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expectation of the X~). Second of all, since we are interested in the distribution of 
Sm/m,  and not that of Sm/r we must rephrase (2) as 

Pr ---m <- --~m - r ( x ) <_ o3 ~ -  

or 

< y ) -  ~o(x/-my) J _< o37c ~ 

With a simple change of variables within integrals we get 

[r e-(X2/2o2) ~ Y 
~bo(~/-my) = o 2 ~  J-oo dx  = o- '-~ f ' - ~  e-((tr dt  = ~o/r  

Thus we have 

rcB  (IX1- 13) 
_ , (3) 

in other words, the maximum difference between the distribution of S . / n  and the 
normal approximation to it is bounded in absolute value by 

rc  e( I x l -  13) 
o3Vr ~ (4) 

for some constant Kc~ E less than 3. 
Thus, in order to establish that our distributions converge to normality at a 

polynomial rate, we need only prove 

LEMMA 5 
There exists a polynomial R(x ,  y, z) such that for any s, v, w, and structure 

q, if  m >__ R (s ,  1,, w) ,  then 

KcB~ E ( I X q - /~ l  3) 1 
f f3fm w 

Proof 
The key for us is to find an upper bound estimate, U(s, v) on 

e(Ixq- 13) 
a 3 

For if we can find such a U(s, i,) which is polynomial in s and v, we would be 
able to easily construct our desired polynomial R(x ,  y, z). So let X q be one of 
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our (previously defined) variables (having expectation/~). Then arguing as we did 
in the proof of lemma 1, we have that 

~ s - 1  #3+ s - 1  t s 
i i - 1  j 7 - /x  

E(Ixq ~13)= ,=~,/,> j=0 
- t , 0 / s - 1 / , ) l  , ( s )  

t z 
i= (s/v) j = 0 

[t(i/s - l /v)]  

and that 
s 

- 

~ ((S 1 ) ( ~ ) # 2 +  ( i _  
i 1 i~  j=O 

02 = ( s / v )  [t(i/s~l/v)] , s t (6) 

i= (s/v} = 

Needless to say, each of these expressions, let alone the quotient 

E ( I x q - # ]  3) 
03 

is rather difficult to evaluate, but if we employ a simple trick used earlier, we will 
be able to make some headway. For given a finite set T of numbers for which one 
wishes to find the mean, one can first partition T into some number of disjoint 
subsets, find the mean of the numbers in each set in the partition, and then take 
an average (weighted by the size of each set in the partition) of these means to 
find the average of the numbers in T. This was exactly the point of our trivial 
proposition of section 4. In the case of (5) and (6), we partition the space of all 
algorithms C such that d(C)>  1/v  into those subspaces where r~(C)= i / s  is 
constant, and using the same technique we used in the proof of lemma 2 for 
simplifying binomial coefficients, we have 

Numerator( i ) = 

[t(i/s-- l /v)]  

E 
J=0  

l t ( i / s -  I/v)] 

E 
j=0 

i - )3 

[t(i/s-- l /v)]  

( s - i l ~ l  3i  (#3~__i))  
( : ) ( ~ ) ( ,  i / s  + 

[ t ( i / s -  l /v)] 

,;0 
( s -  i/x) 3 + i2(s - i)/~ 3 

i2 s , (7) 
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and (working, for the moment ,  with the simpler expression, (7 2, rather than the 

j = 0  

( s -  i/~) 2 + i ( s -  i)/~ 2 
= i s  (8) 

The virtue of these expressions is this. If  we can calculate a largest value for any 
Numerator(i), it will provide an upper  b o u n d  for E(  I Xq - I x 13), and if we can 
calculate a smallest value for any Denominator(i), raising it to the 3 / 2  power  will 
provide a lower bound  for 0 3, and the quotient of these two bounds will prooide a 
desired upper bound for 

E( I S q -  ltl 3) 
o3 (9) 

In the case of Numerator(i), things are quite straightforward. For  since s is fixed, 
and i varies f rom (s/~,) to s, the largest value Numerator(i) can take (which 
clearly happens  when i is as small as possible, that  is, when  i = (x/v))  is 

Numerator (( s/v ) ) = --if = - 

Taking into account the fact tha t /~  must  lie between 0 and 1, we thus have that  
for any variable X q, 

p3 + (v - 1) 
E( IX q-/~13) < (10) 

P 

The situation with Denominator(i) is different. For  given that  s is fixed, and that  
i varies f rom (s /v)  to s, our  tempta t ion  is to say that  the smallest value 
Denominator(i) can take is when i is as large as possible, that  is, when  i = s. In  
this case we would have 

Denominator(s) = ( s -  s/x) 2 + s ( s -  s)/x 2 = (1 - /~)2 .  (11) 
S 2 

true denominator  o 3) 
[t( i /s-  l /g)]  

( S - 1 ) ( j ) l X 2 + ( S - - 1 ) ( t ) (  i - -1 j - f - g ) 2  
j=0 

Denominator(i) = [t(i/s-1/~)] 

[t(i/~l/ ')l 's) (i (j)k\____E_]_~+((s-it~] 2i ( /~2~__i))  

[t(i/s-- l /g)]  



230 E.M. Kleinberg / Stochastic discrimination 

However,  if/~ = 1, which happens with random variables associated with E-struc- 
tures, this denominator  will be  0, and hence will be  useless in forming a quotient 
to provide an upper bound  for (9). So while, in the case of N-structure random 
variables, we have just  shown that 

o3 >__ (1--/. t)3 > 0, (12) 

providing a nonzero lower bound  for g 3, what do we do for E-structure random 
variables, where /~ = 17 Well, it is easy enough to derive an estimate for the 
smallest nonzero value which Denominator(i) can take. This clearly happens when 
i = s - 1, and we have 

(s - ( s -  + ( s - 1 ) ( s - ( s - 1 ) )  = 1 (13) Denominator(s-  1 ) =  1))2 (s - 1)s  s ----Z-] -" 

But how can this be  used in calculating a nonzero lower bound  for o 3 given that 
the mean over one of the sets in our partition (the set where i = s) is 0? We must 
argue as follows. Without  loss of generality, we may  assume that s and v are so 
large that 

1 2 1 
> and s >  5. (14) 1 v s -2 

Let us consider the values for the means of sets in our parti t ion as calculated in 
(8) for i = s, i = s - 1, and i --- s - 2. For  i = s, the mean is 0 (this is the only set 
in the partition having a mean of O) and the size of the set having this mean of 0 
is [t(l~/~)](S [t(1-1/~)] 

j=o k s ) ( J )  = j--~O ( J ) "  (15) 

For  i = s - 1, as calculated in (13), the mean is Denominator(s - 1) = 1 / ( s  - 1), 
and the size of the set having this mean is [tO-I/v-I/s)]( S )(~) [t(1-1/p-1/s)](~)(~) 

)-" s -  1 = Y'~ " (16) 
j=0 j=0 

Finally, for i = s -  2, the mean is 2 / ( s -  2), and the size of the set having this 
mean is [t(1-1/v-2/s)l( )(~) [t(1-l/v-2/s)l( )( ) 

s s t (17) 
E s - 2  = E 2 j "  j=0 j=0 

We claim that the three terms given in (15), (16), and (17) form a nondecreasing 
sequence. For  in light of (14), even the sum with the fewest terms, namely that in 
(17), still has more than t / 2 - m a n y  terms. And  given the symmetry of the 
binomial coefficients about  j = t /2,  and in particular, the fact that 

fore e , 0 . < ,  
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we see that for every value of j which appears in (15) and not in (16), there is a 
term 

in (16) whose value is clearly greater than 

(since s > 2). This shows that the expression in (15) is no greater than the 
expression in (16). By a similar argument,  we have that for every value of j which 
appears in (16) and not in (17), there is a term 

- 1 )  t 

in (17) whose value (given (14)) is clearly greater than 

(since s > 5). This shows that the expression in (16) is no greater than the 
expression in (17). Given that the sizes of these three sets in the partition are 
nondecreasing, and given that their means are 0, 1 / ( s  - 1), and 2 / ( s  - 2) (where 
2 / ( s  - 2) is more than twice as large as 1 / ( s  - 1)), we have shown that the mean 
over the union of these three sets in our partition is greater than 1 / ( s  - 1). Since 
1 / ( s -  1) is the smallest positive value of any mean of any set in the full 
partition, we have thus established the fact that the mean of the entire set is 
greater than 1 / ( s  - 1). Putting all of this together, we have that for E-structure 
random variables 

0 3 > ( s -  1) -3/2 > 0. (18) 

Now let us try to combine the two cases of E-structure and N-structure variables. 
We have shown earlier that the mean ~ for N-structure variables is less than or 
equal to 1 - ( l / v ) ,  and so (1 - / 0  3 is at least as large as 

1 
V3" 

Since 1 / ( s -  1) 3/2 and 1 / v  3 both lie in the interval (0, 1], we thus have that for 
either E-structure variables or N-structure variables, 

1 
o 3 > v3(s _ 1)3/2 > O. (19) 

Combining (10) and (19), we now have that for any variable xq, 

E ( I X q - ~ l  3) < (v 3 + ( v -  1))v2(s - 1) 3/2 . 
a 3 
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Given this polynomial upper bound, U(s, 1,), if we now just define R by 

w) 
our proof is complete. [] 

2.8. PERFECT STOCHASTIC ALGORITHMS 

The d-rating of an algorithm basically presents one with a measure of the 
probability that the algorithm will correctly classify any given structure. Thus, 
given a particular algorithm and a particular set of structures, we can calculate 
the probability that the algorithm is, in fact, perfect. 

Suppose we are dealing with n-many structures, and that we have built a 
stochastic algorithm whose probability of misclassifying any given structure is 
less than 1/kn. Then the probability that this algorithm makes no errors in 
classifying all n-many structures is 

which, if n is large enough, is approximately equal to 

e -  (l/k). 

ThUS if we take k to be equal, say, to 2, then the probability this algorithm is 
perfect is certainly greater than 1/2.  

Suppose, now, that we were to build, independently, m-many such stochastic 
algorithms. Then the probability that none of them was perfect would be less than 
2-m. In other words, within an amount of time polynomial in problem complexity 
and m, the probability that we fail to produce a perfect stochastic algorithm is 
exponentially small. This observation will be exploited when we discuss complex- 
ity theory. 

3. An example 

Let us now return to the example considered earlier where the structure type is 
a simple one-field record consisting of a single nonnegative integer less than 2s, 
and the E and N records of the test set consist simply of two disjoint s-clement 
sets of structures. 

In order to make things as easy as possible, let us begin with a process which 
"randomly" produces and rates trivial Boolean algorithms (i.e., Boolean expres- 
sions based on atoms of the form r = k, where p is the (unique) record-variable 
and k is a specific nonnegative integer less than 2s). Clearly, it is easy to 
construct such processes which operate polynomially in s, and let us assume that 
we have set such a process in motion producing a stream of separation al- 
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gorithms. It is our goal to take this stream and come up with an algorithm having 
an expected d-rating greater than 1 - ( l / s ) .  

Our first step is to put  a simple "wait  and see" filter on the stream which only 
lets pass those algorithms which identify precisely s-many elements from the set 
of all structures. Such algorithms, which we will henceforth refer to as symmetric 
algorithms, are the ones most likely to be seen in our random stream, each of 
whose algorithms identifies somewhere between 0-many elements and 2s-many 
elements from the set of structures. Thus, given the distribution of sizes of subsets 
from a set containing 2s-many elements, we can certainly expect to see at least 
one symmetric algorithm out of every 2s-many produced by the stream (much 
more frequently than this, actually), and so this initial filter does not slow the 
stream appreciably - every polynomially-in-s-many ticks of the clock, we can 
expect a new symmetric algorithm to appear in our filtered stream. 

As discussed earlier, the likelihood of finding highly rated algorithms in the 
stream itself is small, but what about the likelihood of finding algorithms having 
some minimal d-rating? 

The process of "randomly picking" trivial Boolean symmetric algorithms in 
this context is combinatorially identical to the process of randomly picking size s 
subsets from a set having 2s-many elements in it. An algorithm is perfect if the 
subset picked is identical with the set of E-structures, and in general, the ratings 
for any such algorithm are based on the degree to which the subset picked 
coincides with the set of E-structures. 

Specifically, suppose we pick a subset whose intersection with the set of 
E-structures is of size k. Then the rE-rating of this algorithm is k/s  and the 
rN-rating is ( s -  k)/s. Thus the d-rating of the algorithm is ( 2 k -  s)/s., If we 
consider the random variable which takes as values the size of the intersection of 
our "guessed" subsets with the set of E-structures, then the probability density 
function for this variable is just the hypergeometric density function with param- 
eter 1/2,  and as such, it has mean s/2 and variance 
s 2(s - 1) s 2 
4 4 ( 2 s -  1) 4 ( 2 s -  1)" 

Since there exists a central limit theorem for this distribution, for large s it is 
effectively normal, and hence we know that the probability that a randomly 
selected set of size s is at least 1 standard deviation from the population mean is 
greater than 0.30. 

What does this say about d-ratings? Since the mean of our distribution is s/2, 
and its standard deviation is 

S 

2~/(2s- 1) ' 

subsets whose intersection with the set of E-records has size at least 
S S 
3 + 

2~/(2s- 1) ' 
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Fig. 6. Producing a minimal algorithm. 

must have a d-rating at least 

2 g +  2 (2s 1) - s  
- 1 

s ~/2s - 1 

In other words, we have proved that with probability greater than 0.15, a 
randomly produced algorithm has a d-rating 

1 

d T z - f  ' 

or greater. Let us call algorithms C such that 

1 
d(C)>_ 

v~s - 1  
minimal algorithms (see fig. 6). 
Since our stream produces rated symmetric algorithms at a rate polynomial in s, 
and since 

1 
> 0, 2r 

we have thus shown that for some fixed real number 1/p > 0, we have a 
polynomial (in s) stream which randomly produces rated members of 

(C: d ( C ) >  l / p } .  

We are now ready to employ the analyses of the previous two sections to 
produce an algorithm, C, based on stochastic discrimination. Given an arbitrary 
record, q, here is how to calculate C(q): 

Walt at the stream of minimal algorithms until you acquire 

Z(s) =e(2s, 2 ~ / ~ -  1 ,  s )  = 16s 4 -  8s 3 (20) 

many of them. From discussion above, the length of time spent at this task is 
clearly polynomial in s. Now simply calculate the value of M q at this sequence 
of minimal algorithms so acquired (again, this requires no more than poly- 
nomial-in-s much time). If that value is within 1/(2 2r 1 ) of 1, we set C(q) 
equal to 1; otherwise, we set C(q) equal to 0. 

How accurate is this algorithm? Given the number of minimal algorithms we 
employ, we know (by an appeal to lemma 3) that with probability greater than 
1 - ( 1 / ( 2 s ) ) ,  sample means of our random variables (E-record or N-record) lie 
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within 1/(2 2~-s ---Z- 1 ) o f  population means. But since the two population means 
are at least 1/2x/~ -Z- 1 apart, the probability that an N-record random variable 
lies within 1/ (2  2x/~- 1 ) of I (which is the population mean of E-record random 
variables) is less than 1/(2s) .  Thus the probability is less than 1 in 2s that C 
misclassifies any record; or, alternately, C has an expected d-rating greater than 
1 - O / s ) .  

Thus, if we view an "essentially perfect" solution to a pattern recognition 
problem as an algorithm expected to make less than one error, total, in classifying 
records, we have shown that for this general class of example, essentially perfect 
stochastic algorithms always exist. It is important  to note that our procedure not 
only produces algorithms which operate at a rate polynomial in problem com- 
plexity - the procedure itself for producing the stochastic algorithm operates at a 
rate polynomial in problem complexity. 

We had mentioned earlier that for this example, as s increases without bound,  
the probability of seeing better than trivially rated algorithms in the stream 
during the construction of our stochastic algorithm goes to 0. Specifically, for any 
real number e greater than 0, let us denote by P+ the probability that during the 
stochastic discrimination stage, the stream ever presents the stage with a sep- 
aration algorithm with a #ra t ing  greater than e. 

In the processing of the stream prior to stochastic discrimination for this 
example, two filters are employed (see fig. 7). The first filter only lets pass 
symmetric algorithms, and, as discussed earlier, one can expect to see at least one 
such algorithm out of every 2s-many that appear in the stream. The second filter 
only lets past minimal algorithms, and since these are precisely those algorithms 
which (when viewed in terms of sets) are at least one standard deviation greater 
than the mean, one can expect to see at least one such algorithm out of every 7 
that appear in the stream (since more than 30 percent of the area under a normal 
pdf  lies further than one standard deviation from its mean). Combining these two 
facts, we see that out of every 14s-many random algorithms in the original 
stream, at least one can be expected to make it through the second filter. 

But for the moment,  let us restrict our attention to what comes out of the first 
filter. If we look at the number of minimal algorithms needed to carry out 
stochastic discrimination (see (20)), and keep in mind the fact that the ratio of 
symmetric algorithms to minimal algorithms is about 7 to 1, we estimate that 
about 

7T(s)  

Llgori0~nsv [ #l Llgori~,nsv [ #2 Llgori0~-ns~ ~scr~nln~io~ Llgodflu~s- 

Fig. 7. Producing stochastic algorithms from minimal algorithms by using stochastic discrimina- 
tion. 
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many algorithms output by filter no. 1 are required by our stochastic discrimina- 
tion stage to derive a separation algorithm with an expected d-rating of at least 
1 - ( l / s ) .  Since there exist a total of 

(2s)! 

many symmetric algorithms, we thus have that the fraction of symmetric al- 
gorithms output by filter no. 1 during formation of the stochastic algorithm is 

F ( s ) =  7 r ( s )  
(2s) (s9 2 

Clearly P~ is some function of both F(s) and the probability, G(s), that a given 
symmetric algorithm has a d-rating greater than e; and although we are not 
interested in developing just what this function is, it is clear that if both F(s) and 
G(s) are allowed to decrease to O, P~ must also approach O. 

So let us examine what happens as s approaches infinity. Since 

( 2 s ) !  = sill 2s - i 

(--~.v) ~ i=0 s---/ > 2s' 

we clearly have that 

7T(s) 7T(s) 
= < 2------7--- F(s) (2s)!/(s!) 2 

approaches 0 as s approaches infinity. But what about G(s)? Looking back at 
our analysis above concerning the hypergeometric distribution, if we denote by 
i(C) the size of the intersection of the set picked by symmetric algorithm C with 
the set of all E-structures, then since the mean of the distribution is s/2, and 
since its standard deviation is s/(2~(2s- 1)), we know that for any positive 
integer n, those symmetric algorithms with d-ratings greater than 

n 

are exactly those symmetric algorithms C such that i(C) is at least n standard 
deviations greater than the mean. But as n goes to infinity, the probability 
approaches 1 that given an arbitrary symmetric algorithm C, i(C) is less than n 
standard deviations from the mean. In other words, given any number 8 greater 
than 0, if n is so large that the probability is less than 8 that given an arbitrary 
symmetric C, i(C) is at least n standard deviations from the mean, and s is then 
chosen so large that 

n 

x/2s - 1 
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then for that value of s, the probability that a randomly chosen symmetric 
algorithm has a d-rating greater than e is less than 8. Since 8 was arbitrary, we 
have shown that as s approaches infinity, the probability that a randomly 
selected symmetric algorithm has a d-rating greater than e approaches 0. 

Combining all of the above, we have thus proved that for any e greater than 0, 
as sample size increases without bound, the probability of ever seeing, through 
the stream fed to the stochastic discrimination stage, an algorithm with a d-rating 
greater than e, approaches 0. 

4. Remarks 

(1) It is important to note that we have not just proved the existence of 
algorithms, but have actually given a procedure for producing them. In the case 
of our "example" the procedure is fully spelled out, but even in the abstract case 
considered earlier, given an externally supplied stream to carry out the produc- 
tion of "possible solutions" to a given problem, our procedure integrates the 
output of this stream, and, within polynomial time, generates an essentially 
perfect stochastic solution. 

(2) A standard worry in solving pattern recognition problems is that the 
solution will be too "training set specific", and hence will not project to new 
cases. This is of special concern with computer generated solutions where the 
temptation is to use the large quantities of memory available to simply catalogue 
instances of structures for some (perhaps inadvertent) form of template matching. 
On the other hand, with complex problems it is often impossible to find "small" 
solutions. With stochastic discrimination, though, no matter how large and 
complex the solution may be, there is an apparent reduction in this danger of 
"training set specificity" since the algorithm development process never has 
access to any structures underlying the given pattern recognition problem, and 
hence, could never simply code templates. But even more to the point, our 
discussion following the proof of the duality lemma shows that if a stochastic 
algorithm is built from stable pieces, then no matter how many such pieces are 
used, the stochastic algorithm will be stable. Thus, when viewed from this perspec- 
tive, stochastic discrimination provides a possible solution to the seemingly 
paradoxical problem of finding complex, but not "training set specific", solutions 
to pattern recognition problems. 

(3) The development carried out here was in terms of random variables which 
were, in some sense, normalized. At times it may be desirable to consider the 
random variable X q to simply take on the value C(q) at a given observation C. 
In this case, the development carried out above is still valid, however, the 
expectation of E-structure random variables is no longer equal to 1. Referring 
back to the proof of lemma 2, but now using this new version of the random 
variables, let i _<s and j <  t satisfy i / s - j / t  > l / p ,  and let ~ denote the 
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subspace of all algorithms in 6 a with an rE-rating of i/s and an rN-rating of j/t. 
Then we immediately see that for any E-structure q, the expectation of X q 
restricted to ~ is 

(;)/._it (.,,;%,)( ._1,, i - 1  ( i - - l ~ - - ( 7 - - i ) ' ) ( f f ) ( / )  

( j ) ( : )  (jl(ftJ__j),)(i,(sSV_.__i), ) 

Thus for any E-structure q, the expectation of X q is 

E E i j i=(s/v) j = O  

s ItO/s-l/v)l (S )( 

E E i j 
i=(s/v) S = 0  

Similarly, for any N-structure q, the expectation of X q is 

E E i j 7  i=<s/v) j = O  

E E ~ j 
i=<s/v) j = O  

Thus the difference of these two expectations is 
$ [t(i/s--1/v)] , S" t t ~ ' '  

~ ( i ) ( j ) ( i i ) - ( J ) )  
i = (slY) j = 0 

s tt(,/s-1/v)] (s )( 
E E i j i=(s/v) j = O  

However, we know that 

i j 1 
s t v '  

and so the difference of the two expectations is greater than 

s [t(i/s-l/v)] "S" t t x " 1 " 

z (,/(,)(;) 
i= (s/v) = 

s [ t ( i / s - 1 / v ) l ( ) ( : ) t  

E E j 
i= (s/v) j = O  

1 ~ (~) (~)  
(_~) ~ [t(i/s--1/v)] 

i=(s/v) j = O  

E E i 
i=(s/v> j = O  

1 
It 

Thus we are left with the same situation as before, where the random variables 
for a large number of independent trials congregate about two poles a distance 
more than 1/v apart. 
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(4) Suppose one is confronted with a pattern recognition problem, and has 
access to a stream of proposed solutions, but does not have available the r E, r N, 
and d-ratings used above. Then the general process described in the introduction 
is still possible even if one must make an empirical determination of what 
constitutes an average (random) algorithm in order to filter the stream for the 
purpose of enriching it. For given any sequence of nontrivial algorithms, the 
(nonnormalized) random variables discussed just above can be used, and their 
means will still congregate about distinct poles. The only requirement is that the 
rating scheme which is associated with the algorithms in the stream in unbiased 
across structures of a given category (E or N), and that any solution it rates as 
nontrivial, would also have a d-rating which was nontrivial. 

(5) As mentioned in the introduction, the process of stochastic discrimination 
is highly amenable to implementation on arbitrary multiprocessor machines. For 
given the fact that the process takes as input algorithms generated by any means 
(related only by their addressing of a common problem), these algorithms might 
well be generated most rapidly by independent parallel computations. 
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