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Abstract 

To improve recognition results, decisions of multiple classifiers can be combined. We study the performance of combina- 
tion methods that are variations of the majority vote. A Bayesian formulation and a weighted majority vote (with weights 
obtained through a genetic algorithm) are implemented, and the combined performances of 7 classifiers on a large set of 
handwritten numerals are analyzed. 
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1. Introduct ion  

In the recognition of handwritten characters and 
words, there has been a recent movement towards 
combining the decisions of several classifiers in or- 
der to arrive at improved recognition results. This is 
due to a number of reasons, among which are the de- 
mands imposed by real-life applications and the avail- 
ability of a wide variety of algorithms. Practical appli- 
cations demand highly reliable classification, which is 
extremely difficult for a single algorithm to achieve. 
Since many algorithms are available for these tasks, it 
is logical to consider the use of several classifiers to 
achieve higher reliability. The combination can be im- 
plemented using different strategies. In (Suen et al., 
1990) and (Suen et al., 1992), the combined deci- 
sion is obtained by a majority vote of the individual 
classifiers, and variations of this scheme are imple- 
mented in (Gader et al., 1990) and (Xu et al., 1992). 
When the individual classifiers output ranked lists of 
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decisions, these rankings can be used to derive com- 
bined decisions (Ho et al., 1994). Further develop- 
ments in obtaining a combined decision include statis- 
tical approaches (Franke and Mandler, 1992; Huang 
and Suen, 1993), formulations based on Bayesian and 
Dempster-Shafer theories of evidence (Franke and 
Mandler, 1992; Xu et al., 1992), and neural networks 
(Lee and Srihari, 1993). In all these cases, it was 
found that using a combination of classifiers can result 
in remarkable improvements in the recognition per- 
formance, and this is true regardless of whether the 
classifiers are independent or make use of orthogonal 
features. (The independence assumption is sometimes 
made for theoretical considerations, even though its 
validity is usually unknown in practice.) 

Among all the combination methods, majority vote 
is the simplest to implement, and its simplicity has 
permitted theoretical analysis (Lam and Suen, 1994). 
In this work, we study extensions of this method to 
cases in which classifiers are assigned unequal weights 
based on their performance. These weights are ob- 
tained through the optimization of an objective func- 
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tion for the combined decision. Two different, alter- 
native methods of obtaining optimal weights are stud- 
ied: the use of  a Bayesian formulation and a genetic 
algorithm. 

In Section 2 we describe the methods, the objec- 
tive function, and the experimental procedure. The ex- 
perimental results are presented in Section 3, and we 
conclude with some observations and analyses of the 
methods in Section 4. 

2. Details o f  the methods 

In combining decisions of pattern classifiers, the 
method used depends on the nature of the output pro- 
duced by each recognition algorithm. I f  this output 
consists of a single assigned class, then many of the 
combination methods would not be applicable, and 
one of the most suitable means of arriving at a com- 
bined decision would be some form of voting. In ad- 
dition to simple majority vote (in which all votes 
have equal weight), the votes can be weighted so that 
each classifier carries the same weight for all pattern 
classes, or the weights can be determined according 
to the performance of each classifier on each class. 

We will study and compare the results of the two 
weighting procedures. In the former case, the assign- 
ment of  weights will be based on optimizing the value 
of an objective function through a genetic algorithm. 
For the second system of weighting, a Bayesian com- 
bination rule (Xu et al., 1992) will be used, and the 
value of a parameter will be determined so that the 
same function is optimized. In this way, we can real- 
istically compare the results of the procedures on the 
same sets of  data. 

2.1. Optimization of objective function 

In pattern recognition, the recognition (correct) and 
substitution (error) rates are often used to measure the 
performance of a classifier. Ideally, one would like to 
maximize the recognition rate and minimize the sub- 
stitution rate, but this is very difficult to achieve in 
practice. When there is a third option of rejecting the 
input sample in case of  uncertainty, it is a common 
experience that the procedures used to reduce the er- 
ror rate would also lead to higher rejection (and lower 
recognition) rates. On the other hand, it is impractical 

to eliminate the reject option (and force the classifier 
to decide on the identity of every sample), since the 
decisions made in uncertain cases would cause a dis- 
proportionate increase in the error rate. 

In view of the above, it would be natural for a mea- 
surement of classifier performance to contain some 
trade-off factor between the recognition/rejection and 
error rates. For example, at the first and second IPTP 
competitions in Japan (Noumi et al., 1994), the cost 
of an error was set at 10 times that of  a rejection, so 
the precision index was established as 

Rejection + 1 0 ,  Error. 

For our present experiment, the objective function 
to be maximized was defined as 

F = Recognition - fl * Error, 

where fl has values 10, 15, 20, 25, and 30. Obviously, 
the value of fl varies with the accuracy or reliability 
desired for a particular application. The function F 
is related to the precision index defined above; for 
example, when fl = 10, maximizing F is equivalent to 
minimizing Rejection + 11 * Error. These high levels 
of reliability are set for our experiment because they 
can be sustained by the classifiers considered. 

2.2. Genetic algorithm 

First proposed by Holland (1975), genetic algo- 
rithms have been found to be robust and practical op- 
timization methods. A genetic algorithm begins with 
an initial set (also called a population) of randomly 
generated potential solutions to an optimization prob- 
lem. The value of an objective function (fitness value) 
of each solution is evaluated, and the "best" solutions 
are selected for survival. Then the genetic algorithm 
manipulates these selected solutions in its search for 
better solutions. Each solution is encoded into a bi- 
nary string (chromosome), so that new encoded so- 
lutions can be generated through the exchange of in- 
formation among surviving solutions (crossovers) as 
well as sporadic alterations in the bit string encodings 
of the solutions (mutations). 

This method is applied to our problem to obtain an 
optimal set of weights, one for the vote of each clas- 
sifier across all pattern classes. Optimality is defined 
according to the value of F described above, which 
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is also used as the fitness value. To ensure that fitter 
strings have proportionally higher chances of surviv- 
ing in the subsequent generation, the selection mecha- 
nism is implemented by a roulette scheme (Goldberg, 
1989) after the fitness values have been linearly scaled 
so that the maximum scaled fitness value is 1.5 times 
the average fitness value of the population. The scaling 
mechanism was implemented because the variance in 
string fitness values becomes small after several gen- 
erations, with the result that all strings would have 
approximately the same number of offsprings without 
scaling, thereby neutralizing the propagation of fitter 
strings. Since a linear scaling may cause low fitness 
values to be mapped onto negative scaled values, the 
chromosomes having fitness values below a certain 
threshold ft  are eliminated. In this case 

ft  = fare -- 2.5o" 

where fave is the average fitness of the population, 
and o" is the standard deviation of fitness values in the 
population. So if f is the fitness value of a string, its 
scaled value f '  is given by 

f , _  f - - f t  * ( 1 . 5 * f a v e - - f t ) + f t ,  (1) 
fmax--f, 

where fraax is the maximum fitness of the population 
before scaling. 

The population size used is 50, and each gene occu- 
pies 10 bits, so the weight of each classifier has range 
between 0 and 1.023. The probabilities of crossover 
and mutation are 0.9 and 0.05 respectively. Control pa- 
rameters in these ranges have been proposed by several 
researchers to guarantee good performance on care- 
fully chosen testbeds of objective functions (Srini- 
vas and Patnaik, 1994). This is a robust process, in 
the sense that the same optimal fitnesses would result 
upon replications of the process starting from random 
weights. The distributions of weights that produce the 
optimal solutions may vary with each repetition, but 
the procedure would result in the same maximum val- 
ues of the objective function F, as well as the same 
recognition and error rates. Fig. 1 shows an example 
of the behaviors of the maximum and average fitness 
values through the generations. 

From Fig. 1, it can be observed that the fitness val- 
ues do not vary greatly through the generations. This 
is due to the relatively large number (seven) of classi- 
fiers being combined, and the high individual perfor- 

mances. In other words, whenever a weighted majority 
of the votes are in agreement, then the group decision 
would be quite reliable. For this reason, varying the 
weights does not create dramatic improvements. On 
the other hand, any gain in performance is useful for 
practical applications. 

2.3. Bayesian combination rule 

The genetic algorithm implemented assigns a 
weight to the vote of each classifier (also called 
an expert), and this weight would be applied to all 
patterns regardless of the decision made by the ex- 
pert. Another method of determining the weights is 
through the Bayesian decision rule, which takes into 
consideration the performance of each expert on the 
training samples of each class. In particular, the con- 
fusion matrix C of each classifier on a training set of 
data would be used as indications of its performance. 
For a problem with M possible classes plus the reject 
option, C is an M x (M + 1) matrix in which the 
entry Cij denotes the number of patterns with actual 
class i that is assigned class j by the classifier when 
j ~< M, and when j = M + 1, it represents the number 
of patterns that are rejected. 

From the matrix C, we can obtain the total num- 
ber of samples belonging to class i as the row sum 
E M ~  1.= Cij , while the column sum EiM1 Cij represents 
the total number of samples that are assigned class j 
by this expert. When there are K experts, there would 
be K confusion matrices C {k), 1 ~< k <~ K. Conse- 
quently, the conditional probability that a pattern x ac- 
tually belongs to class i, given that expert k assigns it 
to class j ,  can be estimated as 

M 

c, (k~/X-" c, ~ P ( x  C Cil ek(x) = j )  = ij ~ i " 
i=1 

(2) 

For any pattern x such that the classification results 
by the K experts are ek(x) = jk for 1 ~< k ~ K, we 
can define a belief value that x belongs to class i as 

bel(i) = P ( x  C Ci I e l ( x )  = j l  ..... e r ( x )  = i x ) .  (3) 

By applying the Bayes' formula and assuming in- 
dependence of the expert decisions (Xu et al,, 1992), 
bel(i) can be approximated by 
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Fig. 1. Maximum and average fitness values of genetic algorithm. 

~I r P ( x E C i  ek(x) =jk) k=l 

bel(i) - ~--~1H..r=l P(x C Cil ek(x) = j k )  (4)  

for 1 ~< i~<M.  
For  any input pattern x, we can assign x to class j 

i f  bel(j) >>, bel(i) for all i 4: j and bel(j) > a for 
a threshold a .  Otherwise x is rejected, and it is also 
rejected i fek(x) = M +  1 for all k (i.e., i f x  is rejected 
by all classifiers).  

The results obtained from this method depend on 
the value of  a chosen. As a increases, so does the 
degree of  certainty expected of  the decision; therefore 
the error rate would decrease, but the recognition rate 
would be lower also. Fig. 2 gives an example of  the 
behavior of  the recognit ion and error rates when a 
varies from 0.1 to 0.99999999. 

Given that the results depend on the choice of  a ,  
and because we would l ike to compare optimal re- 
suits obtained from different methods, the value of  a 
was chosen to maximize the value of  the same objec- 
tive function F.  In Fig. 2, the optimal value of  a is 

0.999952 when/3 = 10, and this value of  ot represents 
the threshold above which the ratio of  the changes in 
the recognition and error rates would exceed/3.  In this 
figure, each dotted line contains the points yielding 
the same value of  F,  and it can be seen that the max- 
imum value o f  F obtained is approximately 96. More 
detailed experimental results are presented in Table 5 
of  Section 3.2. 

2.4. Classifiers and experimental data 

The combination methods described in this section 
can be applied to any category of  patterns or classi- 
fiers, therefore they can be tested on any type of  data. 
Our experiment was performed on seven classifiers 
used to process a large collection of  handwritten nu- 
merals. This database consists of  46451 numerals col- 
lected by the Industrial Technology Research Institute 
( ITRI)  of  Taiwan. Of these, 24427 were used to train 
the individual classifiers, and the other 22024 samples 
form the test set for the recognizers. Since the com- 
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Fig. 2. Recognition results for different values of  ot (shown as labelled). 

bination methods should first be trained on represen- 
tative classification results, only the results of  the test 
set are used in our study. This set was subdivided into 
50 subsets at ITRI, with 5 subsets per class. The first 
3 subsets of  each class were assigned to set A and the 
rest to set B, with the result that 13272 samples belong 
to set A and 8752 to B. 

The seven classifiers used to recognize this data 
cover a wide variety of  approaches. The features used 
include the pixels o f  the pattern, contour and algebraic 
features, together with structural information derived 
from a skeleton. The classifications are based on tree 
classifiers, dynamic programming, relaxation and ex- 
haustive matching, as well as a neural network. More 
details about these experts are contained in (Liu et 
al., 1994; Suen et al., 1992; Tu et al., 1991). These 
classifiers have not been trained to the same extent on 
the training set of  24427 samples, and their individual 
performances on sets A and B are shown in Table 1. 

Given that both sets A and B had been test sets 
for the recognizers and the division into two sets was 

arbitrary, the differences in results between the two 
sets indicate the presence of  more distorted samples 
in set A. However, no effort was made to manipulate 
the data in order to obtain a more even partition. 

2.5. Experimental procedure 

The classification results of  set A were used to train 
the combination methods in the following ways. 

(i) To derive optimal weights (using the genetic 
algorithm) that should be assigned to the different 
classifiers for the weighted majority vote. AS stated 
in Subsection 2.2, the search process is continued 
through 150 generations, with 50 chromosomes per 
generation. Each chromosome is decoded into ~a set of  
seven weights which are then normalized so that their 
sum equals one. Each weight is assigned to the vote 
of  the corresponding classifier. The decisions of  these 
seven classifiers on each sample of  set A are combined 
using weighted majority vote, from which the recog- 
nition and error rates of  the combined decision on set 
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Table 1 
Performance of individual classifiers on handwritten numerals 
Expe~ Set A Set B 

Recog. Error Obj. F Recog. Error Obj. F 
El 82.791 3.187 50.919 84.004 3.005 53.953 
E2 91.132 1.982 71.316 92.207 1.874 73.469 
E3 93.264 1.575 77.517 93.864 1.165 82.210 
E4 87.176 1.831 68.867 88.425 1.714 71.287 
E5 94.929 0.799 86.942 95.007 0.857 86.437 
E6 95.999 0.821 87.786 96.023 0.697 89.054 
E7 93.716 5.327 40.446 95.212 4.273 52.479 

A can be obtained. The fitness value of the chromo- 
some is the value of F derived from these rates. The 
optimal weights are the ones that produce the maxi- 
mum value of F over the 150 generations. 

(ii) For the Bayesian method, the confusion ma- 
trix obtained from set A is used to estimate the prob- 
abilities P ( x  E Ci ] ek(x)  = jk). Using these proba- 
bilities, the recognition results of set A are processed 
by the Bayesian combination rule for different values 
of the parameter or, and the a that produces the max- 
imum value of F is approximated. The optimal a is 
located through a successive refinement of the scope 
of the search, which is a reasonable procedure because 
of the discrete nature of the problem. 

When training is complete, the results are tested on 
set B in 2 ways: 

(a) The optimal weights obtained from (i) are as- 
signed to the respective classifiers, and the weighted 
majority rule is applied to obtain recognition results 
for the combination. 

(b) For the Bayesian method, the probabilities and 
optimal value of c~ described in (ii) are used to com- 
bine the decisions of  the seven classifiers. 

3. Experimental results 

The procedures described in Subsection 2.5 are ap- 
plied to the classification results of  2.4, and the results 
are given below. 

3.1. Results of  the genetic algorithm 

This algorithm was trained by combining the deci- 
sions of  the classifiers on set A in order to obtain a set 
of weights that would maximize the function 

F = Recognition - fl • Error, 

Table 2 
Optimal results ~omgenetic algorithm 
Result Recog. Error R~ect 
I 96.9033 0.1507 2.9460 
2 96.9711 0.1582 2.8707 
3 96.8279 0.1507 3.0214 
4 96.6772 0.1432 3.1796 

where fl = 10, 15, 20, 25 and 30. 
For each value of fl, the search begins with 50 sets 

of random weights and this is propagated through 150 
generations. This process is performed 9 times for 
each value of fl, with different starting weights. Con- 
sequently, 45 cycles of search had been completed (on 
a total of 337,500 sets of weights). For each fl, the 
recognition and error rates that give Fma~(fl) among 
all the 9 cycles are determined. For the five values 
of a,  this procedure produces the four sets of  results 
shown in Table 2. Among these results, the second 
set appears far more frequently as optimal with the 
smaller fl 's; this is logical given that its error rate is 
the highest, which means that the fitness of this result 
would decrease as fl increases. 

Of the results shown in Table 2, the first set of values 
gives the maximum F for all values of/3, and there- 
fore they are considered optimal for our experiment. 
It should be noted that the set of weights producing 
a value of F may not be unique, due to the fact that 
F does not vary continuously with the weights, but is 
piecewise constant. In other words, F changes only 
when the weights have shifted sufficiently to change 
the majority vote for some patterns. In addition, dif- 
ferent sets of weights may create different combined 
decisions in a small number of  cases, but result in 
equal recognition and error rates. For example, the op- 
timal results are actually obtained from the two sets 
of weights shown in Table 3. 

It is instructive to note the following points: 
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Table 3 
Weights producing optimal results 
Expert Weight 1 
E1 0.0359 
E2 0.1882 
E3 0.0898 
E4 0.0918 
E5 0.2219 
E6 0.2532 
E7 0.1191 

Table 5 
Results for different values of a 

Weight 2 Value of a Recog. Error F (fl = 10) 
0.0642 0.5 99.3144 0.6856 92.4584 
0.1986 0.8 99.1863 0.5500 93.6864 
0.0892 0.95 99.0582 0.4520 94.5378 
0.1028 0.995 98.7870 0.3466 95.3213 
0.2122 0.9995 98.4856 0.2712 95.7734 
0.2310 0.99995 98.1617 0.2260 95.9015 
0.1021 0.999995 97.6343 0.1884 95.7508 

0.9999995 96.8131 0.1205 95.6076 

Table 4 
Optimal results from combining 6 experts 
Combination Recog. Error Reject 
El, E2, E4-E7 96.5642 0.1507 3.2851 
El, E3, E4-E7 96.4210 0.1658 3.4132 

3.2. Results of Bayesian combination 

Using the procedure described in Subsection 2.5, the 
classifier decisions are combined using the Bayesian 
method. It should be noted that the results are sensi- 

(i) El is usually assigned the lowest weight by 
this search algorithm. Given that its performance is 
low, the result supports the validity of the process. 

(ii) Results 4 of Table 2 are obtained only when fl 
= 30, or the cost of an error is very high (31 times that 
of a rejection). In this case, the optimal result produces 
a lower error rate, and E7 was actually assigned the 
lowest weight, which is consistent with its high error 
rate. 

(iii) E3 is usually assigned a low weight (directly 
above that of E l ) ,  which cannot be explained by its 
performance alone. Since the reason can be that this 
classifier does not make much contribution to the com- 
bined result (in the sense that the vote of this expert 
may not change the combined decision of the other 
experts in most cases), an attempt was made to verify 
this hypothesis. 

The decisions of the 6 experts without E3 were 
combined using the entire procedure described above 
in this subsection, as well as those of  6 experts with 
E3 replacing E2. In other words, the search process is 
propagated through the entire 45 cycles for each set 
of 6 experts, and the optimal results are determined 
as described above. These results, shown in Table 4, 
indicate that the combined performance is better with 
E2 than E3. Given that E2 definitely has weaker indi- 
vidual performance than E3 (as shown in Table 1 ), it 
can be inferred that E2 is more effective as a comple- 
ment to the other classifiers, and this point has been 
identified by the genetic algorithm. 

The optimal weights shown in Table 3 are then ap- 
plied to set B, and the results are summarized later in 
Table 6. 

tive to the value of a chosen. Since higher values of 
a require higher levels of confidence, the error rate 
would be a decreasing function of a,  as is th~ recog- 
nition rate. The function F, however, would increase 
to a maximum, then decrease. The decrease begins at 
the point where the trade-off between the recognition 
and error rates involve a factor larger than ft. Table 5 
shows some results obtained from set A for different 
values of a,  when fl = 10. 

For each value of fl, the a that yields the maximum 
F is determined. Logically, higher values of fl;impose 
higher costs on errors, from which it follows that the 
optimal solutions would be more reliable. In Order to 
achieve this, a also needs to have a larger magnitude. 
This is in fact the case, except that for fl = 20~ 25 and 
30, results have stabilized, so the same a = 0.9999999 
and optimal recognition results are obtained!. When 
fl = 10, a = 0.999952. These a ' s  were then used 
as thresholds for set B, and the combined recognition 
results are given in Table 6. In this table, the results of 
simple majority vote are also included for comparison. 

An examination of the patterns misclassified by the 
combinations shows the following. 

(i) As expected, all the errors of Bayesian 2 are 
contained in those of Bayesian 1. 

(ii) Of the substitutions made by majority vote, 
all except one are also misclassified in the same way 
by weighted majority vote derived from the! genetic 
algorithm. 

(iii) Of the 14 misclassifications made by majority 
vote, 10 are common to all the classifiers. 

The 14 misclassified samples from set B are shown 
in Fig. 3, where the class of each sample is indicated, 
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Results of combination methods 
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Method Set A Set B 
Recog. Error Rej. Obj. F Recog. Error Rej. Obj. F 

Majority vote 96.233 0.196 3.571 94.274 96.778 0.160 3.062 95.178 
Bayesian 1 (a=0.999952) 98.162 0.218 1.620 95.977 97.784 0.571 1.645 92.071 
Bayesian 2 (ot=0.9999999) 96.338 0.090 3.572 95.434 96.550 0.366 3.084 92.655 
Genetic algorithm 96.903 0.151 2.946 95.396 97.075 0.228 2.697 94.790 

-'-> d'- > 
2 (7) 2 (7) 3 (7) 5 (8) 7 (2) 7 (3) 8 (2) 

7712 tP 
9 (7) 9 (7) 1 (2) 2 (7) 3 (7) 6 (1) 9 (7) 

Fig. 3. Patterns misclassified by majority vote. 

and the recognition result is given in parentheses. 

4. Analyses and observations 

From Table 6, it can be seen that the results of 
majority vote follow the general trend of the individual 
classifiers in that the results of  set B are better than 
those of A in every aspect, which is reasonable since 
no training of the combination is involved. This is 
not the case for the other two combination methods 
when the error rates are considered. These methods 
are trained to produce optimal results on set A, while 
their performances on set B are lower. 

These differences in performance lead to a salient 
point regarding the size and quality of the training 
data. Theoretically, if the training set is large enough 
as well as truly representative of the data in general, 
then there should be no discrepancy between the re- 
suits obtained from the two sets. In reality, it is very 
difficult to partition a database into sets of the same 
quality and complexity, especially since the degree of 
recognizability of  patterns actually depends on the fea- 
tures and the classifier used. This being the case, it 

remains a challenging problem as to how one can de- 
vise a partition of a database into sets that would be 
considered equal in difficulty for classifiers in general. 
It would be even more challenging to obtain or select 
a training set that could give optimal performance for 
unknown test data. 

It is a simpler matter to increase the size of a 
database, provided that time and effort are available. 
When we examine the results of  the combination 
methods, it is evident that a training set of 13272 
samples is insufficient to establish accurate values 
of bel(i) for 0 ~< i ~< 9, for the Bayesian method. 
These values are calculated from the confusion ma- 
trices of the classifiers, each of which has 100 entries 
(not counting the rejections) for the classification 
of numerals. The off-diagonal entries, representing 
erroneous identifications, usually have very low mag- 
nitudes. Paradoxically, the better the classifier, the 
smaller would be these entries. Consequently, bel(i) 
would be partly based on rather scant evidence. This 
problem is especially serious when one recognizer 
makes a particular misclassification only in the test 
set. In this case, the corresponding factor in the nu- 
merator of bel(i) (obtained from the training set) 
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would be zero, and hence the combined decision can- 
not be correct regardless of the decisions of the other 
classifiers. 

The problems arising from size and uniformity of 
the datasets have less pronounced effects on the ge- 
netic algorithm, because only a few parameters need 
to be determined from the training data. In our prob- 
lem, only the 7 optimal weights (one for each classi- 
fier) have to be defined. The less specific nature of the 
training process has also resulted in a closer proximity 
between the results of sets A and B. 

Moreover, the genetic algorithm is capable of iden- 
tifying dependencies among classifiers, by assigning 
lower weights to those that are less effective in in- 
fluencing the group decision in the optimal direction. 
This is a very useful feature, since this kind of knowl- 
edge is not available when classifiers are designed and 
implemented. In general, it is a non-trivial problem to 
decide whether classifiers are independent, since there 
can exist many possible overlaps between feature sets 
and classification methods. Even after a recognizer has 
been trained and tested, and its individual performance 
is known, it is still difficult to know how significant a 
role it would assume as a member of a group. The ge- 
netic algorithm can help to obtain such information, 
which can lead to simpler and more efficient multiple 
classifier systems. 

In terms of computing time involved, it is certain 
that genetic algorithms take much longer to train, in 
order to search for optimal weights. However, once 
these weights are obtained and applied to the system, 
then the weighted majority vote is much faster than 
the Bayesian combination at the recognition stage. 

Finally, if we consider the results of Table 6, it is 
clear that for any fl ~> 4, or for any reasonable trade- 
offs between the recognition and error rates, simple 
majority vote produces the best results on set B. This 
is another facet of the comment made in this sec- 
tion about the size and representative capability of 
the training data. From the results on set A, it is ev- 
ident that using more parameters in the combination 
process can produce more optimal results, provided 
the parameters are accurate reflections of the data set. 
For this reason, the optimal values of F ( f l  = 10) are 
94.274, 95.396 and 95.977 for majority vote, genetic 
algorithm, and Bayesian 1 respectively, and this order- 
ing agrees with the degrees to which the combination 
methods are modeled after set A. Consequently, for 

datasets with characteristics close to those of A, the 
same pattern of behavior would be expected. However, 
when these characteristics are not the same, adapting 
the parameters to set A can result in "overfitting", and 
this effect is observed in the results of set IB, even 
though the 2 sets of data were collected together under 
the same conditions. For this second set, the i optimal 
values of F are in reverse order to those of  A, Showing 
that it is more difficult to generalize as the number of 
parameters increases. Therefore, in the absence of a 
truly representative training set, simple majority vote 
remains the easiest and most reliable solution among 
the ones studied here. 
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