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Abstract—Recently, it has been demonstrated that combining

[15], and neural networks [12]. In all these cases, it was

the decisions of several classifiers can lead to better recognitionfound that using a combination of classifiers has resulted in

results. The combination can be implemented using a variety of
strategies, among which majority vote is by far the simplest, and
yet it has been found to be just as effective as more complicated
schemes in improving the recognition results. However, all the
results reported thus far on combinations of classifiers have
been experimental in nature. The intention of this research is
to examine the mode of operation of the majority vote method in
order to gain a deeper understanding of how and why it works, so
that a more solid basis can be provided for its future applications
to different data and/or domains. In the course of our research,
we have analyzed this method from its foundations and obtained
many new and original results regarding its behavior. Particular
attention has been directed toward the changes in the correct
and error rates when classifiers are added, and conditions are
derived under which their addition/elimination would be valid for
the specific objectives of the application. At the same time, our
theoretical findings are compared against experimental results,
and these results do reflect the trends predicted by the theoretical
considerations.

Index Terms—Character recognition, classifier combination,
decision combination, majority vote problem.

I. INTRODUCTION

N THE domain of OCR, there has been a recent moveméh

a remarkable improvement in the recognition results, and this
is true regardless of whether the classifiers are independent or
make use of orthogonal features.

Among all the combination methods, majority vote is by
far the simplest for implementation. It does not assume prior
knowledge of the behavior of the individual classifiers (also
calledexpert$, and it does not require training on large quanti-
ties of representative recognition results from the experts. Yet,
in a very recent study [12], when five combination strategies
(majority vote, Bayesian, logistic regression, fuzzy integral,
and neural network) are employed on seven classifiers, the
results show that the majority vote is just as effective as the
other more complicated schemes in improving the recognition
rate for the data set used.

The last point deserves some attention, because all the
results reported thus far on the majority vote have been
experimental in nature—given a particular set of classifiers
on a certain database, certain results have been obtained.
Consequently, there is no assurance that similar improvements
can be obtained when a different database is used, or when
{different set of classifiers are combined. Therefore this

toward combining the decisions of several classifiers [Rethod requires a closer scrutiny, so that its behavior can be

order to arrive at improved recognition results. The conpetter l_mderstood an_d used to advantage not only in character
bination can be implemented using a variety of strategid§Ccognition, but also in other pattern recognition areas where a
In [11] and [14], the combined decision is obtained by gultiplicity of algorithms exist, each producing a set of well-
majority vote of the individual classifiers, while variations oflefined outcomes. Examples of these areas could be speech
this scheme are implemented in [6], [11], and [15]. Whefgcognition and other problems in computer vision where it
the individual classifiers produce ranked lists of decisiong@y not be realistic to expect large volumes of data for training
these rankings can be used to obtain combined decisigiassifier combinations. For these applications, majority vote
[9]. Further developments in deriving a combined decisids the most appropriate option.

include statistical approaches [4], [10], formulations based This work is concerned with understandingwandwhythe

on Bayesian and Dempster—Shafer theories of evidence [@mbination of expert opinions by majority vote can produce
improved recognition results, and the assumptions under which
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From this model, we will relax the assumptions of equal To avoid confusion in dealing with our problem, we should
probabilities among the experts and examine the effects distinguish between the number of choices available to the
the consensus created by the addition of new experts. Thater (expert), and the number of values his/her vote would
problem is studied without assuming independence of thave. In the example af: possible classes, the expert would
experts whenever possible. With this assumption, conditiohave m + 1 choices for each classification. However, when
are derived as tavhenthese additions would improve thewe consider the recognition rate of the consensus, each vote
results of the combination. Interestingly, these conditionsould have only two values—correct or not. The probability
are related to the widely studied notion of the odds ratiof this vote being correct would coincide with the recognition
Throughout the paper, we will compare our findings againsite » of the expert, while the other option has probability

experimental results. 1 — r. Analogously, when we consider the probability of
the consensus making a particular mistake (misclassifying a
Il. THE VOTING PROBLEM sample of “2" as “3,” for example), the two values of each

) . vote are whether the expert makes this particular mistake or
In the rest of this paper, we assume thatlassifiers or o anq these values have probabilitiesnd1 — s, given that
experts are deployed, and that for each input sample, €36h eypert makes this misclassification with probability
expert prod_ucgs a unique decision regarding the identity of theConsequentIy, both cases reduce to the problem of deter-
sample. This identity could be one of the allowable class§gining the probability of consensus when each vote has only
or a rejection when no such identity is considered possible. {f}, aiternatives, and so they can be considered as the same
the event that the decision can contain multiple choices, thfyplem with different parameters. With this situation of two

top choice would be selected. In combining the decisions gfonatives, the subject had been much studied as the classical
then experts, the sample is assigned the class for which th%ﬁing problem under the following assumptions:
is a consensus, or when at ledsbf the experts are agreed a1 The number of voters is odd.

on the identity, where A2: Each voter has the same probabiljtyof voting one

way (for example, correctly).

A3: The individual decisions are independent.
if n is odd. Of these assumptions, Al will be eliminated from the outset,
with interesting consequences. Then new results are obtained

Otherwise, the sample is rejected. Since there can be more tfgm the cases when A2 is not assumed, and subsequently we
two classes, the combined decision is correct when a majorf#jll €xamine the consequences when A3 is relaxed.
of the experts are correct, but wrong when a majority of the The different premises between the classical problem and
decisions are wrongndthey agree. A rejection is consideredhe current one are summarized in Table I, wheres the
neither correct nor wrong, so it is equivalent to a neutr@umber of possible recognition classes for the current problem.
position or an abstention. For the problem we are examining,We will use P(Cc) and P(Cw ) to denote the probabilities
there is only one correct answer but many wrong ones for eg@hthe consensus being correct and wrong respectively. One
individual. Consequently, there will be cases where the grogpnsequence of the last difference shown in Table | lies in
has no consensus, leading to a rejection. This possibility i behavior of’(Cyy) as P(C) changes, or vice versa. In
a rejection by the group would exist whether each individu#te original problem,P(Cy ) + P(Cc) = 1, so they would
has the rejection option or not, and so we include the rejedtange in opposite directions, and maximizing one quantity
option for each expert for the sake of generality. would minimize the other. This is no longer true when the
While each classifier has the possibilities of being corre@nsensus has the reject option, sil&'y ) + P(Cc) < 1.
wrong, or neutral, the combined (correct) recognition rate fr this case, decreasing(Cy) does not necessarily imply
really the probability of the consensus being correct, assumitigt £(Cc) would increase correspondingly (since the reject
each vote to have only two values—correct or not. In oth@fobability can increase). The nature and magnitude of the
words, errors and rejections can be grouped together as ¢h@nges are found to be related to whetheis even or
other possibility when the correct rate is considered. Howev@gd. These are some of the aspects that will be presented
in this case, the overall error rate of the combination cannigt Section lIl.
be calculated directly from the error rate of each classifier.
Due to the nature of consensus, the combined decisionlis GENERAL RESULTS ON THEPROBABILITY OF CONSENSUS
wrong only when a majority of the votes are wroagdthey ¢ o assume that, independent experts have the same

make the same mistake. Of course, this is a strength of tEﬁ)babiIity p of being correct, then the probability of the

combination method—due to the large number of possib @ nsensus being correct, denotedy(n), can be computed
mistakes, the majority would not often make the same ON%ing the binomial distribution as

As a result of this need for consensus, we can only calculate
the probability of the consensus committing a particular error z": <n )pm(l gy
m

n . .
§+1 if n is even
k= n+1

from the individual probabilities of committing the same error. Pe(n) =

To assess this particular (mistaken) probability of consensus, m=k

we can also consider each vote to have only two values—aihere the value of: is as defined in Section Il. Condorcet
makes this particular mistake or not. [3] is usually credited with first recognizing this fact, and his
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TABLE |

DIFFERENCES BETWEEN CLASSICAL AND CURRENT PROBLEMS

for each voter

Difference Classical problem Probiem under study
Number of voters Odd Odd or even
Number of choices 1 correct

2 (correct or wrong) m-1 wrong

1 rejection

Existence of consensus Always

Not guaranteed:
lack of consensus
leads to rejection

work became the basis of much modern research in voting
and decision making (for example, [1] and [7]). The following
theorem, attributed to him, has provided validity to the belief
that the judgment of a group is superior to those of individuals
provided the individuals have reasonable competence.
Theorem 0: Supposen is odd andn > 3. Then the
following are true:
1) If p> 0.5, then P=(n) is monotonically increasing in
and Pz(n) — 1 asn — oc.
2) If p<0.5, then Po(n) is monotonically decreasing im
and Pc(n) — 0 asn — oc.
3) If p = 0.5, then Po(n) = 0.5 for all n.
The following recursive formula is given in [8], but the
derivation is unpublished.
Corollary to Theorem O:If n is odd andn > 3, then

2n+1

m—171 _ \2n—(m—1) 2n
+p _Zﬂp (1-p) <m_1)
2n o
(1-p) > pr@-p <m )
m=n+1

2n

. k[ 21

+p Y p*(1-p)? ’“<k
k=n

since 2n =0
2n+1/)
2n

(1-p+p) Y, pPA-p>"

k=n+1

n nf2n
+p"tH(1-p) <n

)

(¥)

n
Po(n+2) =Pe(n) + p? <n +1 )p(n_lm(l — p)(n /2 — Pe(20) + p" (1 = p)" <27?)’
2
n and
_ (1 _ p)2 <7‘L +1 >p(n+1)/2(1 _ p)(n—l)/Q'
2 c(2n)

In the rest of this section, we will generalize the above
theorem to even as well as odd valuesnofThe following
theorem and corollaries apply when> 1.

Theorem 1:

Po(2n+1) = Po(2n) +p" (1 - p)" <27;1> and

Pe(zm) =Pe(zn =1) =" - (1)

Proof:

Pc(27’L + 1)
2n+1
_mf2n+1
— Z pm(l _ p)2n+1 m< )
m=n-+1 m =
2n+1
_ 2n 2n
o m _ 2n+1—m
- 2 e ()« ()]
2n+1 om
=(1-p ) pr@- p)Q"_’"<m )
m=n+1

m=n-+1
2n
_ 2n—1 2n—1
m _ 2n—m
> o= () + (1))
2n o — 1
(1-p) > p"’(l—p)Q"_"’_l< . )
m=n+1
o o —1
m—1 _ 2n—m -
+p _Zﬂp (1-p) <m_1>
2n—1
m n—l—m n -1
(1-p) > prA-p! < . )
m=n+1
2n—1

. nel—kf2n—1
+p Y pFa-pP ’“( 5
k=n

sinc 2n—1
2n

)
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TABLE 11
VALUES OF P (n) FOR DIFFERENT VALUES OF p AND n

Values of n
2 3 4 5 6 7 8 9 10

0.10 0.0100 0.0280 0.0037 0.0086 0.0013 0.0027 0.0004 0.0009 0.0001
0.15 0.0225 0.0608 0.0120 0.0266 0.0059 0.0121 0.0029 0.0056 0.0014
0.20 0.0400 0.1040 0.0272 0.0579 0.0170 0.0333 0.0104 0.0196 0.0064
0.25 0.0625 0.1562 0.0508 0.1035 0.0376 0.0706 0.0273 0.0489 0.0197
0.30 0.0900 0.2160 0.0837 0.1631 0.0705 0.1260 0.0580 0.0988 0.0473
0.35 0.1225 0.2818 0.1265 0.2352 0.1174 0.1998 0.1061 0.1717 0.0949
0.40 0.1600 0.3520 0.1792 0.3174 0.1792 0.2898 0.1737 0.2666 0.1662
0.45 0.2025 0.4253 0.2415 0.4069 0.2553 0.3917 0.2604 0.3786 0.2616
0.50 0.2500 0.5000 0.3125 0.5000 0.3438 0.5000 0.3633 0.5000 0.3770
0.55 0.3025 0.5748 0.3910 0.5931 0.4415 0.6083 0.4770 0.6214 0.5044
0.60 0.3600 0.6480 0.4752 0.6826 0.5443 0.7102 0.5941 0.7334 0.6331
0.65 0.4225 0.7183 0.5630 0.7648 0.6471 0.8002 0.7064 0.8283 0.7515
0.70 0.4900 0.7840 0.6517 0.8369 0.7443 0.8740 0.8059 0.9012 0.8497
0.75 0.5625 0.8438 0.7383 0.8965 0.8306 0.9294 0.8862 0.9511 0.9219
0.80 0.6400 0.8960 0.8192 0.9421 0.9011 0.9667 0.9437 0.9804 0.9672
0.85 0.7225 0.9393 0.8905 0.9734 0.9527 0.9879 0.9786 0.9944 0.9901
0.90 0.8100 0.9720 0.9477 0.9914 0.9842 0.9973 0.9950 0.9991 0.9984
0.95 0.9025 0.9928 0.9860 0.9988 0.9978 0.9998 0.9996 1.0000 0.9999

2n—1 ; ; i ;
‘ o —1 We note that this conclusion coincides with that of Corollary
=(1-p+p > Q1 —p)Q"_l_"< )
k=n

k to Theorem O when the latter result has been simplified.
Corollary 2:
Po(2n+2) = Pe(2n) = p" (1 - p>n<2”) [w}

n

—(A=-pp"(1-p"! <2n N 1)

=Pc(2n-1)-p"(1-p) <nn )
. ) Corollary 3:
The next three corollaries are direct consequences of The-
orem 1. Pe(2n+2) — Pe(2n - 1)
Corollary 1: . af2n\[dn+2)p* —2np — (n+1)
n nf2n—1 =r-p{, 2(n+1) '
Fen+l)—FPe(2n -1 =p"(1-p"{~ ~ )21
Proof: From Theorem 1, From the preceding results, we can deduce the following
remarks wherD < p < 1.
Pe(2n+1)— Pe(2n—1) 1) As immediate consequences of Theorem 1,
n nf2n n nf2n—1
=p"(1-p) <n)—p (1-p) < n ) Po(2n) < Pe(2n+1) and
Kgn - 1) <2n _1 )} Po(2n)< Pc(2n — 1) for all n andp.
+
n n—1

2) When even number2n of experts are combined,
Pc(2n) is monotonically increasing jf > n/(2n+1), which is
true for alln if p > 1/2. Conversely FP(2n) is monotonically
— (1= p)" {(p _1) <2n - 1) +p<2n -1 )} decreasing with if p<n/(2n + 1), which is true for alln

n if p<1/3. When1/3 < p<1/2, however, the behavior of
-1 P-(2n) would depend on the relative magnitudespoand
< n )(P—Hp) n/(2n + 1).
_ on — 1 on — 1 Supposep = 0.4. Then Po(2) < P(4) sincep >n/(2n +
smce< 1 ) = < ) 1) = 1/3, while P(4) = P-(6) sincep = n/(2n+1) = 2/5,
andPc(6) > Pc(8) sincep < 3/7. This represents a departure
< )(2p ~1). from the odd cases, whe#&-(n) is monotonically decreasing
n for all p<1/2. These differences can be seen in Table Il
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(a) FERFORMANCES OFINDIVIDUAL ExPERTS oN CENPARMI
DATABASE AND (b) PERFORMANCES OFSOME COMBINATIONS

TABLE 1l

Method Rec. Subs. Rej.
El 86.05 2.25 11.70
E2 92.85 2.45 4.70
E3 92.95 2.15 4.90
E4 93.90 1.60 4.50
E5 96.95 3.05 0.00
E6 98.30 1.70 0.00
(@
Combination ‘ Rec. I Subs. I Rej.
Two Experts
El1+4 81.75 0.00 18.25
El1+5 84.15 0.05 15.80
E1+6 85.40 0.10 14.50
E2+4 88.40 0.00 11.60
E2+6 91.95 0.05 8.00
E3+4 88.80 0.00 11.20
E3+6 91.90 0.15 7.95
E4+5 91.60 0.10 8.30
E4+6 92.95 0.10 6.95
E5+6 96.55 0.85 2.60
Three Experts
E2+3+4 96.40 0.10 3.50
E2+3+6 97.45 0.30 2.25
E2+4+45 97.60 0.15 2.25
E2+5+6 98.30 0.85 0.85
E3+4+6 97.65 0.25 2.10
E4+5+6 98.50 0.85 0.65
Four Experts
E1+2+3+4 92.50 0.00 7.50
E2+3+445 95.45 0.00 4.55
E2+3+4+6 95.70 0.00 4.30
E2+4+5+6 97.00 0.15 2.85
Five Experts
E14+2434+445 97.55 0.05 2.40
E1+2+3+4+6 97.70 0.10 2.20
E2+3+445+6 98.25 0.25 1.50
Six Experts
E1+2+3+4+5+6 I 97.05 l 0.05 J 2.90

(b)

and Pc(2n + 2) < Pc(2n — 1) iff the reverse inequality
holds forp. Since f1(n) is increasing and approachgs =
(1+52)/4 asn — oo, Po(2n +2) > Po(2n — 1) for all n
if p > p, (= 0.8090).

For example, whep = 0.75, P (8) < P(5) sincep < [3+
(65)1/2] /14, while the opposite holds fop = 0.8.

4) As a consequence of Remarks 1) and 2), we can conclude
that whenp > p,,

Pe(2n)< Pc(2n — 1) < Pe(2n 4+ 2) < Po(2n + 1)
< Po(2n+4) < Po(2n + 3)
for all n. For example,
Pco(2) < Pe(1) < Po(4) < Po(3) < Po(6) < Pe(5)
<Pe(®)Y<Pe(T)< -+

and these are shown by the results in Table Il where0.85.

5) Remark 4) defines the ordering Bf(n) for sufficiently
large values ofp. We now consider small values ¢f to
consider the probabilities of consensus errorg 4f1/3, the
following inequalities are true for al.

a) Po(2n 4+ 1) < Po(2n — 1) by Theorem 0;

b) Po(2n) < Po(2n — 2) by Corollary 2; and

¢) Pc(2n) < Pco(2n 4+ 1) by Theorem 1.

To obtain a complete ordering of these probabilities, it
remains to compare=(2n + 1) with Pc(2n — 2). From
Theorem 1,

Pe(2n+1) = Pe(2n — 2) + p(1 — p)" L <2nn— 1)

[(2=4n)p* +(6n - 3)p+ (1 —n)
| |

2n—1

S0 Pc(2n +1) < Pe(2n —2) when(2 — 4n)p? + (6n — 3)p +
(1 — n) <0, which is true when

3

Sincef,(n) is monotonically increasing with a minimum value
P = 0.1208 whenn = 2, Pc(2n + 1) < Po(2n — 2) if p is
below this value.

For these small values @f the consensus probabilities are
ordered as

Pc(2n+2) < Po(2n) < Po(2n 4+ 1) < Po(2n — 2)
< Pe(2n—1)
for all n. For example, we would have
Pc(8) < Po(9) < Po(6) < Po(7) < Po(4) < Pe(5)
< Pe(2) < Pe(3).

where values offc(n) are shown for different values of Erom Table 11, it can be seen that this is true foe 0.1, but

and p.

3) When both even and odd numbers of experts are €oNg) According to Theorem 1Pc(2n — 1) — Po(2n)
sidered together, we know from Remark 1) that(2n +
2) <Pc(27’L + 3) and Pc(27‘L + 2) <Pc(27‘L + 1) for all p.
The relation betweelr(2n + 2) and P (2n — 1) is given by

Corollary 3, from which it follows that

Po(2n +2)> Pe(2n — 1)

p> fi(n)

iff

n+von2+6n+2

In+ 2

not for p = 0.15 which exceeds the threshold valpg

p*(1 — p)"(**~'). By considering the convergence of the
seriesX52, (**~')[p(1 — p)]", we can conclude that as
n — oo, p™(1 —p)"(Q"n_l)—> 0 for 0<p<1,p # 0.5. For

p = 0.5, the sequence{(3)?"(**~')} can be shown to
converge to 0 by comparison witfl /v/2n + 1}. Therefore
P-(2n) approaches the same limit @&-(2n — 1) for all

values ofp in (0, 1).
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IV. APPLICATION TO PATTERN RECOGNITION TABLE IV

. . . . . PERFORMANCES OFCEDAR QLASSIFIERS ONBS DATABASE
The discussion in Section Il presents a mathematical model

for comparing the recognition rates obtained from the ma- Classifier Recognition
jority vote of n independent experts when each expert has

recognition ratep. We assume the experts to have reasonable Binpoly 3.9
performance, so that is greater than the threshojg, given Chaincode 96.38
gpovg, in which case the ordering of. the consensus probabil- Gabor 95.17
ities is stated in Remark 4). In particular, it follows that a

Gradient 96.20

combination of an even number of experts would yield a
recognition rate that is lower than those obtained from both GSC 97.05
n+ 1 andn — 1 experts.

In pattern recognition applications, it is also an important
consideration that the results should have low error or substitu- Morphology 95.76
tion rates. For these error rates, we can consider the consensus
probabilities for smallp. If the probabilities of each expert
making a particular mistake are approximately equalpto  In the second experiment, the data consists of the recog-
then we can certainly assume thak p;, in which case a nition results obtained by seven classification algorithms de-
combination of an even number of experts would be less veloped at CEDAR in Buffalo, NY. The test set BS contains
likely to commit this error than the consensus+of+ 1 or 2711 handwritten numerals extracted from United States Postal
n—1 experts. With this assumption of approximate uniformityservice mailpieces, and these are contained on CEDAR CD-
the same conclusion regarding the number of experts can®@M together with the recognition results. Fuller descriptions
applied to the overall substitution rates, which are after all tifé the classifiers are given in [12]. When only the top choice
summation of the probabilities of particular errors. is considered, the individual algorithms produce the results

The assumption of equal probabilities has made possible fftown in Table IV with no rejections, i.e., each input sample
computation of exact differences in the likelihoods of consetf assigned its nearest class.
sus, whether it is the correct or wrong decision. Admittedly, the These classifiers have 120 possible combinations, whose
assumption of equal probability, while convenient in theory€cognition results on the BS database are shown in Fig. 1,
is impossible to achieve in practice—different experts cannfiere the scatter plot shows the recognition versus the substi-
be expected to operate with equal probabilities in real-lif&/tion rates. The two disjoint clusters of points (one resulting

situations. For this reason, we will examine the consequendt¥n combinations of even numbers of experts and the other
of relaxing this condition in the next section. Actually, thd"™®m odd numbers) tend to illustrate the comments made

ordering of the probabilities derived in Remarks 4) and $jPove. Combining the decisions of odd numbers of experts

has been demonstrated in experiments where the performarf@duces higher correct as well as higher error rates, so the

of experts do differ. The results of these experiments af@résponding pointsin Fig. 1 are positioned to the upper right,
described below. while the even combinations result in points located to the left

In the first experiment, six classifiers are applied to th%ﬂd belgw (r.eprefsehntlng Iowgr sqbst|tut.||c|)rt1) afnd r(:orr((jact ri':ltesé.l
recognition of handwritten numerals from the CENPARM[ "€ tendencies of these combinations will be further develope

database. While the first four recognizers [14] had be the next se_ction, in which we W.".l conside_r the combinatiqns
developed independently of one another, the last two expe(? Sexperts with un_equal probabilities of being correct (which
[5] are very similar in their behavior because they are adapt't?dthe case for this example).

to the same feature vector. The performances of the individual

methods are shown in Table lli(a) and part of the combined V. RELAXATION OF EQUAL PROBABILITY ASSUMPTION

results are giVen in Table I”(b) The results shown in these In Section Il of this paper, we have assumed equa' proba_
tables differ to a certain extent from those presented in [5] fjflities of correct classification, which has made possible the
two reasons. The substitution rate of E2 has been decreasfdermination of the exact differences between the consensus
and integer votes are used here. In the previous work, a fractigidbabilities. Since this assumption cannot be expected to be
of a vote is assigned to each candidate class of E1 whgiie in practice, in this section we derive comparisons between
this expert cannot differentiate between two or three classéise consensus probabilities when the assumption of uniform
whereas in the present context this would be considered toés relaxed. In particular, we will examine the differences
a rejection by this expert. created by the addition of votes to a group of voters (even as
From these tables, it is clear that the performances of thell as odd in number). Given the unequal probabilities, the
experts differ significantly, but the combined recognition anexact differences would depend on the individual probabilities,
substitution rates mostly follow the patterns stated in Remarkat thesignof these differences can be easily determined when
5) and 6). For example, E2 6 produces lower recognition one vote is added. When two votes are added, the change in the
and substitution rates than E23 + 6 or E2+ 5 + 6, while consensus probabilities will be expressed precisely in terms of
E2 + 3 + 6 has higher rates than E2 3 + 4 + 6, which has the individual probabilities. Then, by using a theorem in Graph
lower rates than EX¥ 2 + 3 + 4 + 6, and so on. Theory, the sign of this difference is found to depend on the

Histogram 93.88
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Fig. 1. Combined results of CEDAR classifiers.
TABLE V
EFFeCT oF ADDING ONE VOTE TO 2n VOTES
Case Original 2n votes New vote Original Decision | New decision
1 n correct Correct Reject Correct
2 n wrong and agree | Wrong and agree Reject Wrong
TABLE VI
ErFrFecT OF ADDING ONE VOTE TO 2n 4 1 VOTES
Case | Original 2n+1 votes New vote | Original decision | New decision
1 n+1 correct (class cl) Not cl Correct Reject
n+1 wrong & agree .
2 (class c2) Not c2 Wrong Reject

familiar notion of the odds ratio. These results will be deriveith Table V. When a change does occur, it is in the direction of
and discussed below. reducing the rejection rate, changing it into a correct decision
part of the time and an error in the other cases. In other words,
adding one vote t@n (which also changes the number of
A. Addition of One Vote voters from even to odd) has the effect of reducing the degree
We will first consider the effect (on the probability of theof “indecision,” changing it into correct or wrong decisions.
group decision being correct or wrong) of adding one vote to On the other hand, the addition of one vote 2o + 1
2n and2n + 1 votes respectively. In each case, the addition #btes would change the group decision onlyrif- 1 of the
the new vote would make a difference only when the originariginal votes are in agreement, and the new vote disagrees,
group decision had been split in a “marginal” way, so that tibus changing the original majority to a lack of consensus.
new vote could tip the balance. These possibilities are summarized in Table VI. The end result
When the original group ha®n voters, this would be the is that the rejection rate would increase, while both the correct
case ifn of the votes had been in agreement—either thend error rates would decrease. We can consider this to be
are correct, or they make the same mistake. Depending on #heesult of changing an odd number of voters into an even
decision of the new vote, the possible changes are summariredhber, when more “tied” votes may occur.
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TABLE VII
EFFeCT oF ADDING Two VOTES TO 2n VOTES
Case | Original 2n votes New votes On.gl.mﬂ NF‘?"
decision decision
1 n correct (class cl) (cl, cl) Reject Correct
2 n+1 correct (class cl) (not cl, not cl) Correct Reject

The trends shown in Tables V and VI are true regardless ofTheorem 2: There exists a one-to-one functighfrom B
the values of the probabilities of the individual experts. Thiato A such that for every in B,b and f(b) differ at only
individual probabilities, however, do determine the magnitudesie component.
of the changes. If each expert is correct much more often than Proof: Define to be a graph whose vertices are the set
(he/she is) wrong, then the probability of Case 1 is expecteddball vectors inA U B, and every vertex in (G is adjacent
be greater than that of Case 2 whether the number of votersdsall vertices that differ frome at only one component.
even or odd. Since no assumption on the independence of Tieen G is a bipartite graph in which every vertex of is
experts has been made, these results would always be valatijacent ton vertices inB, and every vertex oB is adjacent

to n + 1 vertices in A. The function f corresponds to a

B. Addition of 2 Votes t@n Votes complete matching ofB to A, and its existence reduces to

If we consider the addition of two votes to an even (or odé © Walzla_lll(’go#log?r:rligih Zrcr)r?z:\ir:?llin exists iff every subset
number of votes as the repeated addition of one vote, then PBy ) . ' ning exi y
. o of k vertices in B must be collectively adjacent to at least
is not clear what the net effect of the two additions would b

. ’(Eistinct vertices inA. We now show that this condition is
since the second step appears to reverse the trend of the ISStISfied in the present context. Supnose the subserarfices
For this reason, we have to examine the results when the o p P - =>upp . .

IN"Bis B" = {b;,bs,---,b;}. If we list all the vertices in4

votes are added together to an existing group. that B’ is collectively adjacent to, we obtak(n + 1) vertices

Suppose the original voters have probabilitiesl < 7 < ) :
2n, of being correct, and for the new votes these probabiliti bé( the comm_ent n _the last paragrgph. We/denote this set of
s not necessarily distinc§(n+1) vertices byA4’, and we need
areq; andgs. The addition of the new votes would affect th L X L
. . 0 show that there are at ledstdistinct vertices inA’.
correct rate only in the cases shown in Table VI, If A’ has less thark distinct vertices, then at least one
In Case 1, the two new correct votes would change the '

, iy . . .
original tied vote into a majority, while in Case 2 the new vote\frt@fa must appear i’ more thar + 1 t|me§, |mply|n/g
ata’ must be adjacent to more than+ 1 vertices inB

would deprive the original decision of a majority. Since the . :
, . . since each occurrence af corresponds to an adjacent vertex
first case causes the correct rate to increase while the second; . . ) X
. . In. B’). This is a contradiction, and so the hypothesis of Hall's
causes it to decrease, the net change to this rate depends o E] e o . .

eorem must be satisfied, or the functiprexists.

relative probabilities of the two cases. We will calculate th

probability of each case when the expert opinions are assunzfgggsnlo\;vngsfi:]h_'rsatt)?:‘\)/rﬁmwa?cﬁovc‘epg;;[‘eeﬁpr?tiabt'l't'es of
to be independent. | Yreject —

Let A denote the set of(2") vectors of the form correct} and P{correct — reject} respectively. The net
n increase in the correct rate would be

(pllvp/27 e 7p/2n)7 where for eaC“!
o {pi for m terms P{reject — corg@ct} — P{correct — 7‘6]6015}2
i~ 1-—p; forthe othern terms - -
P =qpy [[r-0-a)1-e)> ] 61
and let B be the set of (%) vectors of the form A =l B =l
(.04, --,p5,), where for each, Given the existence of by Theorem 2, each term in the
; second sum has a corresponding term in the first sum such
pl = pi orn+1terms that the 2 terms differ at only one component. Hence
¢ 1—p; forn-—1terms.

i _ P{reject — correct} — P{correct — reject} >0 if

Then for every vectow in A, there exist exactly: vectors
in B that differ from ¢ at only one component. These el = pi) - (1= Q1)<1 ~a)pi 20, or
vectors of B are obtained by replacing each of the— p;) EELE > pi for all 4. (5.2)
terms ina by p;. Similarly, for eachb in B, there aren + 1 (=)@ -a) = 1-p
vectors inA that differ fromb at only one component, eachin other words, the addition of two votes #n votes would
of which is obtained by changingzg in binto (1 —p;). Since increase the correct rate if the product of the odds ratio of the
(P> (,21), 1Al > |B|. two new votes is not less than the odds ratio of any original

In order to determine the difference between the probabiliete. Since the odds ratio of any expert should be greater
ties of Case 1 and Case 2 in Table VII, we prove and use tti@an one when the correct rate is considered, this condition is

following result: easy to satisfy. In the event that all the probabilities are equal,
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TABLE VIl
EFFeCT OF ADDING Two VOTES TO 2n + 1 VOTES
Case | Original 2n+1 votes New votes Orlglpa ! N.e‘f"
decision decision
1 n correct (class cl) (cl, cl) Reject or Correct
’ Wrong
2 n+1 correct (class cl) (not cl, not cl) Correct Reject or
Wrong

this condition coincides with the one derived in Remark 2) ofcrease, while the change in the error rate would depend on
Section Ill. Furthermore (5.2) is a sufficient, but not necessaiye individual error rates.
condition. The correct rate is more likely to increase with the
addition of two votes, for the following reasons. C. Addition of Two Votes ton + 1 Votes
i) The first sum in (5.1) contains more terms than the

There are two main differences between this case and that of
second, and

y : ' . Section V-B. The first difference is in the changes of decisions
i) Each term in the first sum is the product af + 2 " AT
- ) L .~ that can be caused by the addition of two votes in this instance,
probabilities of being correct (and probabilities of being

wrong), while each term in the second sum is the produfgd the second is in the conditions equivalent to (5.2) and

of n+ 1 andn + 1 such probabilities, respectively. Since th -3) that would apply in this case.

" . . . First, the addition of two votes t&n +1 can cause a change
probability of being correct is usually greater than that of belnﬂ .
wrong, the first sum is expected to be greater than the seco'ndthe correct rate under the conditions of Table VIil.
' As in Section V-B, we letp;,1 <i < 2n+ 1, and ¢, ¢

!n Example 5.2.1 beIp_W, I can be seen that the correct ra}:}gnote the probabilities of being correct. l@tbe the set of
increases when condition (5.2) is satisfied, even though thevtﬁg.ﬂ) vectors of the form(p,. ph,- -, ph .,) such that
additional votes do not have better performance on their own. » Pr:P2: s Ponr

Example 5.2.1:Supposen = 2,p; = p» = 0.8, p3 = 0.85 ) s for n terms

andpy = 0.9, while ¢y = 0.7 and¢» = 0.8. Then (5.2) is Py = { 1—p; forn+1terms.

satisfied forl < ¢ < 4, and in this caseP-(4) = 0.8752

while Pc(6) = 0.9140. Analogously, we letD represent the set of af*"; ) vectors
We note that analogous arguments can be applied to consigethe form (!, p,+,pY4 .,) in which L

the change in the probability of making a mistake when we add bz R

two votes to2n. Suppose the original votes have probabilities v | i for n 4+ 1 terms

$1, 82, +, 82, Of making this mistake while the new votes pi = { 1—p; fornterms.

have probabilitiest; and #5. If we replace the notion of
“being correct” in the above discussion with that of “makind hen ¢ and D have the same cardinality, and the change in
this mistake,” the same process of reasoning would yield tHe correct rate is

result that the probability of making this mistake increases, or .
Plreject — wrong} — P{wrong — reject} >0, if P{reject or wrong — correct}

— P{correct — reject or wrong}

{a ;;Z ) > 1 % - for all <. (5.3) 2n+1 241
- ' .2 . ” . IQ1Q2Z Hpé—(l—ql)(l—qu)z lei/
If the probability of making a mistake is very small for each C i=1 D =1

expert, then inequality (5.3) would rarely be true. However, (5.4

(5.3) is a sufficient, but not necessary, condition. Actually,

the sign of P{reject — wrong} — P{wrong — reject}y Which is positive, or the correct rate increases, when the odds

cannot be determined priori, as it would depend on theratios satisfy the inequality

values ofn, s;'s and¢;'s. This is true due to the occurrence NP i

of two opposing factors. In the expression for this difference 1-qa)(1—)

[analogous to condition (5.1)], the first sum contains more

terms than the second. At the same time, it is clear that thethe case of equal probabilities, this conclusion coincides

individual terms in the first sum are smaller than those in tiveith conclusion 1) of Theorem 0. Furthermore, sin€eand

second when the;’'s andt;’s are very small, since each termD contain the same number of vectors, we can also conclude

in the first sum is the product of + 2 of these small values that the correct rate would decrease if inequality (5.5) were

while each term in the second is the product of omly 1 of reversed.

them. As a result, the sign of the difference has to depend orExample 5.3.1:Supposer = 2,p; = p2 = 0.8,p3 = py =

the probabilities involved. 0.85 and p; = 0.9, while ¢ = 0.7 and ¢z = 0.8. Then
Therefore we can conclude that when two votes are addauhdition (5.5) is satisfied fot < ¢« < 5, and in this case

to 2n votes, it is much more probable for the correct rate tB-(5) = 0.9692 while Po(7) = 0.9759.

for all 4. (5.5)
1—pi
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Example 5.3.2:Supposern = 1,p1 = p» = 0.7, and rate. Exactly the opposite results are obtained when one vote

p3 = 0.75, while g = g2 = 0.6. Then is added to an odd number.
q1q2 . Di ) 2) Adding two votes to an even or odd number of votes
- (i-a) =225< T—p; fori=1,2,3. would increase the correct rate if the odds ratios satisfy

conditions (5.2) and (5.5), respectively. Furthermore, adding
In fact, for this example, the probabilities of being correct afgyo votes to an even number would be more effective in
0.8050 and 0.7971, respectively, before and after the additii%reasing the correct rate than adding the votes to an odd
of the two new votes. number, given similar probabilities. However, if reducing the
To consider the probability of making a mistake, we can leror rate is the objective, then more definite gains can be
s; (1£i<2n+1), andty, s be the probabilities of making gptained in the second case.
the mistake as before. By similar reasoning, we can concludenterestingly, these conclusions can be observed in Fig. 1,
that the net change in the probability of making this mistakghere results of combining the CEDAR classifiers are shown.
denoted by When one vote is added to an even number, the result moves
toward the upper right (higher correct as well as error rates),
while the movement is in the opposite direction when one more
vote is added. This “zigzag” effect agrees with statement 1)
is positive if above. At the same time, it is clear that the increase from two
t1t s to four, then to six experts results in mainly an upward trend
> for all 4 (5.6) (increase in recognition rate). This is in marked contrast to the
A=t)(1=t2) " 1= leftward movement (decrease in substitution rate) produced by
and the change is negative if the reverse inequality holds. Diséreasing the number of experts from three to five and seven.
to the small values of the odds ratios of making a mistakéhese results are reflections of comment 2) above, and they
condition (5.6) would rarely be true. are particularly noteworthy given that the independence of the
We now note the second difference between adding t@pert opinions cannot be taken for granted in the experiment.
votes to2n and to2n + 1 votes. This lies in the values of
the changes in the correct rates. Suppose the condition for the
change being positive is satisfied, i.e., condition (5.5) is true.In the previous sections, we have derived many conclusions
Then a comparison of the expressions in (5.1) and (5.4) wowtout the expected behavior of the consensus. For example, it
indicate the former to have a higher value when gkis and is clear that the performance of the combined decision is an
g;'s have similar values in both expressions. This is due tocreasing function of the number of experts, provided each
the fact that the expression in (5.1) contains a number of exegpert can perform at an appropriately high level. The number
terms with positive signs. In other words, adding two votesf experts that can be used would naturally depend on practical
to 2n votes would be more effective in increasing the correémitations, and adding new experts cannot always be readily
rate than the addition of two votes #m + 1, given similar accomplished. For this reason, in this section we consider
probabilities of being correct. This can be seen in the resutteans to combine the existing experts in more optimal ways,
of Examples 1 and 2, wherB-(7) — P-(5) = 0.0037 while and derive conditions as to which of the strategies would be
P-(6) — Po(4) = 0.0388. In the case of equal probabilities,preferable for a given objective.
this can also be observed in Table Il, where, fioe 0.8 for Suppose an odd humber of experts are available and a higher
example,Po(7) — Po(5) = 0.0246 while P-(6) — P(4) = reliability is desired for the combination. This can be easily
0.0819. accomplished in one of two ways: to eliminate one of the
A difference also exists between the changes in the prole¢perts from voting, or to double the vote of one of the experts
bilities of making a mistake when two votes are adde@sio (i.e., assign a double weight to this vote). Either action would
and to2n+1 votes. We have already made the observation theltange the number of votes from an odd to an even number,
the direction of the change in the first case would depend ea that the majority would produce more reliable results. Of
the values ofs, s/s, and¢;s. When two votes are added to arcourse, doubling one vote is equivalent to the addition of a
odd number of votes, however, it is much more likely for thdependent vote, but it has been shown in Section V that adding
error rate to decrease. In this instanBdycject or correct —  one vote to an odd number would decrease both the error and
wrong }—P{wrong — reject or correct} is expressed as thecorrect rates regardless of independence. Analogously, when
difference of two sums having an equal number of terms, and even number of votes are given, the same options can be
the terms in the first sum should be smaller than those in theed to obtain an odd number of votes, when the recognition
second when the;s and¢;s are very small (as explained at theate would be higher.
end of Section V-B). It follows thaP{reject or correct — An illustration of these results is given in Fig. 2, which
wrong} < P{wrong — reject or correct} when two votes shows the substitution rates produced by all 56 combinations
are added to an odd number of votes, while this statemaritthree and five CEDAR classifiers using majority vote,
cannot be made if the original number of votes is even. together with the results obtained by doubling the best classi-
This section can be summarized briefly as follows. fier of each combination and eliminating the weakest before
1) Adding one vote to an even number of votes increasesting. For clarity, the combinations are represented oncthe
both the correct and error rates while reducing the rejectiaxis in ascending order of their error rates by majority vote.

P{reject or correct — wrong}

— P{wrong — reject or correct}

VI. V ARIATIONS ON MAJORITY VOTE
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Fig. 2. Substitution rates produced by odd combinations of CEDAR classifiers.
TABLE IX
EFFECT OF ELIMINATING v FROM 2n VOTES
Case | Original 2n votes \Z Original decision | New decision
1 n correct (class cl) not ¢l Reject Correct
2 n wrong and agree (class c2) not ¢2 Reject Wrong
TABLE X
ErFFeCT OF DOUBLING v2,, AMONG 2n VOTES
Case | Original 2n votes Von Original decision | New decision
1 n correct (class cl) cl Reject Correct
2 n wrong and agree (class c2) c2 Reject Wrong

Intuitively, one would double the “best” and eliminateand doubled. The elimination ef, would lead to increases in
the “worst” algorithm, where these attributes are measurbedth the correct and error rates in the cases shown in Table IX.
according to the correct and error rates. For algorithms with nolf we let A = the set of all vectors of the fornfl —
rejections, the choice is obvious; otherwise the choice would, p4, p5, - - -, p4,,), where for2 < ¢ < 2n,

depend on the priority placed on higher recognition or lower " {pi for m terms

substitution rates. Apart from this consideration, it remains to
1—p;, forn-—1terms,

be resolved as to which alternative is better—to eliminate a

vote or to double one. In the rest of this section, we will derivéhen the change in the correct rate resulting from the elimina-
conditions to provide answers to this question. tion of v; can be represented by

2n
A. The Even Case P.{reject — correct} = Z(l - p1) Hp’i’.
As before, we suppose that tBe experts are independent A =2
and they have correct probabilities,1 < ¢ < 2n. For ease  On the other hand, doubling the votewf, would increase

of notation and without loss of generality, we suppose thhoth the correct and error rates in the cases indicated in
votesv; andws, are respectively the votes to be eliminatedable X.
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If we let B = the set of all vectors of the form other hand, the elimination af; should lead to better results
(P1, 05, + s Dhpe1s P2n), Where forl < i < 2n -1, whenr is smaller. Therefore conditions (6.1) imply that the
significant entity is the produet; rs,,. The ratiosr; andrs,
can vary in opposite directions without affecting the sign of the
difference P.{reject — correct} — Py{reject — correct},
then the change in the correct rate whep is doubled can Provided conditions (6.1) or their opposites are satisfied. It
be given as also means that when s, is small enough compared to the

other odds ratios, a higher recognition rate can be obtained

N for n — 1 terms
Pi=Y1-p, forn terms,

et from eliminatingv; than doublingwv,,,, while the reverse is
Ao . — / 1 2n
Fa{reject — correct} = ZPQ" 1:[ Piy true whenryr, is relatively large.
B =t If s; (1 <4 < 2n)is the probability of expert making
and therefore a particular mistake, and we consider eliminating versus
P.{reject — correct} — Py{reject — correct} doubling vz, then the same reasoning would lead to
2n 2n—1 . .
P {reject — wrong} — Py{reject — wrong} >0
= — r_ / ¢
- 2,4:(1 pl)Hsz zB:mn 1—[1 o it 5% 5L _Sm
< = 1=

>
1—81‘1—8]' 1—811—82n

In order to compare these two sums, we will define a 1-
1 function f of A onto B. The setA can be partitioned as and the statement would also be true if all the inequalities
A= XUY, whereX consists of all the elements it with were reversed.
P, = pan, @andY contains the rest. Example 6.1.1:Supposen = 3,p1 = 0.72,pp =

If @ € X, thena is also an element oB, and we define 0.75,p3 = ps = 0.8,ps = 0.85 and ps = 0.9. Then
fla)=a.lfacY, thena= (1—py,p4, 04,1, 1—pan), 7176 >7ir; for i,j # 1,6, and we expectl.{rcject —

where forb = (p4,p4, -, 04 1), 0/ = p; for n terms. Let correct} < Py{reject — correct}, which is true since the
A, be the set of all such vectois and let B, be the set of former equals 0.0502 while the latter has value 0.0549.
all vectors(ph, p, -« -, ph,_,) such that For the special case of a two-class recognition problem
in which there are no rejections;; = 1 — p;, and so
P = {pi for n — 2 terms (pi/1=pi)(P;/1=p;) > (p1/1=p1)(P2n/l=p2n) & (si/1~
1—p; forn terms. si)(sj/1 = s;)<(s1/1 — s1)(s2n/1 — $2,,). Therefore if the

By rephrasing (in terms of transversal theory) the reasoniffifdualities are satisfied for thg;'s, it would imply that
used in the proof of Theorem 2, there exists a 1-1 funcfipn €liMinating v, is better than doublingsy,. The opposite

of A, onto B, such that for everp € A, b and f»(b) differ conclusion follows when the inequalities are reversed.
at exactly two entries. In other word;ff;(b) is obtained by In order to test the applicability of the theoretical results to
changing two of thep;’s in b into (1 — p;)'s. a practical situation where the independence of experts cannot

Since every € Y would have the forn{l — p1,b, 1 — psy.) be assumed, we consider the combinations of four experts

with b € Ay, we can definef(a) = (p1, f2(b), pan). We note from_TabIe III(a).. The choic;e of f(_)ur gxperts ensures Fhat
that f|y is 1-1 becausg has this property, and is 1-1 on cgndmon (6.1) or its reverse meq.uallty will always be Sa.tISfI.ed.
A=XUY since f(X)N f(Y) = ¢. Since experts E5 and E6 are highly correlated, combinations
containing both of these experts are not considered. For each
of the remaining nine combinationsy refers to the first
expert in the combination angd, the last, and the value of

It therefore follows that P.{reject — correct} —
Py{reject — correct} >0 if

(1= p1)pip;(1 — pon) d = rirs — rors is shown in Table XI together with the
>p1(1—pi)(1 —pj)pan foralli,j #1,2n, recognition rates when the vote of the expert with the highest
(lowest) recognition rate is doubled (eliminated).
which is true if It is encouraging that the experimental results generally
pi Yz > P Pan (6.1) coincide with the theoretical conclusion: whép- 0, doubling
1—pil—p; " 1—p11—poy v4 Produces higher recognition rate than eliminating and

vice versa. The exceptions are in combinations four and six,
in which d has very small magnitudes. It would be more

correct} < Pa{reject — correct}. i illuminating if recognition results on much larger databases
Since changing rejects into correct classifications wouL n be used

increase the recognition rate, we can conclude that when

conditions (6.1) are satisfied, eliminatimg would produce a

higher recognition rate than doubling,,, while the opposite B+ The Odd Case

conclusion would be true if the inequalities were reversed. Given2n + 1 experts, it is possible to obtain more reliable
Naturally, if we denote the odds ratjg/1 — p; by r;, then results from the combination by eliminating vote or dou-

it is logical to consider these alternatives only whenis bling v2,,+;. These actions will create changes in the marginal

small andrs,, is large. In addition, whem,,, is doubled, then cases shown in Tables XII and XIII, respectively. In order to

larger values of-5,, should imply more improvement. On thecompareP.{correct — reject} with Py{correct — reject},

If the reverse inequalities hold, therP.{reject —
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TABLE XI
RESULTS OF DOUBLING v4 VERSUS ELIMINATING v
Combination d=rr,— Recognition rate
Doubling v, Eliminating v,
1 E1+2+43+4 —76.26 96.35 96.40
2 E1+2+3+5 24.86 97.20 97.10
3 E14+2+3+6 185.47 97.70 97.45
4 E1+2+4+5 -3.82 97.60 97.60
5 E1+2+4+6 156.78 98.00 97.70
6 E14+3+4+5 —6.88 97.70 97.40
7 El1+3+4+6 153.73 98.10 97.65
8 E243+4+5 209.93 97.85 97.40
9 E2+3+4+6 547.94 98.20 97.65
TABLE Xl
EFFECT OF ELIMINATING v FROM 27 + 1 VOTES
Case | Original 2n+1 votes vy Original decision | New decision
1 n+1 correct (class cl) cl Correct Reject
2 n+1 wrong and agree (class c2) c2 Wrong Reject
TABLE XIlI
EFFECT OF DOUBLING v25,+1 AMONG 2n + 1 VOTES
Case | Original 2n+1 votes Vyuet | Original decision | New decision
1 n+1 correct (class cl) not cl Correct Reject
2 n+1 wrong and agree (class c2) | not c2 Wrong Reject

we determine the probabilities of occurrence of Case 1 in théa#hen this is the case, a higher correct rate should result from

tables. doubling vz,,4+1 than from eliminatingy; .
If C = the set of all vectors of the form SinceC contains more terms thaf, no conclusion can
(p1, 05, 0%, Poyy1), Where for2 <i < 2n 41, be drawn when the reverse inequalities hold. However, this

difference in the number of terms also implies that it is more

ol = {pi for n terms likely in general to have a higher recognition rate whep,
1-p; fornterms is doubled than when); is eliminated. In addition, when
then P.{correct — rejectt = S py H?g;—lp/i/' conditions (6.2) are satisfi'ed, the difference in the probabi'lities
Suppose D = the set of all vectors of the form between the two alternatives is -expec-te(.JI to be .greater in the
(P4, Py, Phons 1 — pans1) such that forl < i < 2n, odd case than the even one, given simpigs. This can be
seen by comparing the results of Examples 6.1.1 with those
o= {pi for n + 1 terms of Example 6.2.1 given below.
! 1-p; forn—1terms. Example 6.2.1:Supposen = 2,p;, = 0.72,py =

) 0.75,p3 = 0.8,p4 = 0.85 and p; = 0.9. Then conditions
. iy — _ 2n o/ ’ 2o L
ThenP(.i{cowect—weJQict} = gnD (1= pang1) 12, . _(6.2) are satisfied, and®.{correct — reject} = 0.0895
In this case|C| = (2") > (,2",) = |D|. By a reasoning ' ;
o n ntl ; while Py{correct — reject} = 0.0422.
similar to that used in the even case, there exists a 1- ) o .

. ) ) xample 6.2.2:For an actual situation, we can consider the
function f of D into C' which allows us to conclude that . . .
P.{correct — reject} — Pi{correct — reject) > 0 if five experts E1-E4 and EG6 in Table lli(a) of Section IV. The

¢ odds ratios of these experts satisfy the conditiors > r;7;
P1 P+l for 4,5 = 2,3,4, so we expect doublings to produce a
l=p11l-prn higher recognition rate than eliminating, which is the case
Pi  Pi  goralli,j£1,2n41. (6.2) experimentally since those results are 97.25% and 95.7%
1-pil-p; respectively.
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Fig. 3. Performances of combinations of three classifiers.

Analogously, by applying the same reasoning to case 23) Whenn is odd, doublingy; should result in a higher
of Tables XII and XIll, we conclude that’.{wrong — recognition rate even when the inequalities are not completely

reject} — Py{lwrong — reject} >0 if satisfied, because of the different number of terms. For the
same reason, however, eliminatimg should generally pro-
51 Sl % % foralli,j #£1,2n+1. duce a lower error rate.
I-sil—=somp1 1—=sil—s; 4) When the inequalities in (6.3) are reversed, eliminating

. - ... v; would produce a higher recognition rate than doubling
Therefore, when these conditions are satisfied, eliminating whenn is even. In the event that is odd. the outcome would

would result in a lower error rate than doubling.1. Again, ~ yenend on the value afas well as the individual probabilities
due to the different number of terms involved, it is more I|kel)6f the experts

that P.{wrong — reject} > Py{wrong — reject}, which
means the elimination af; should produce a lower error rate
in general. This conclusion can also be observed in the odd VIl. CONCLUDING REMARKS

combinations of the classifiers shown in Fig. 2. The majority voting method has been used to combine the
The results of this section can be summarized as follows,egjts of classifiers for character recognition, and it has been

1) From an odd (even) numberof experts, an even (0dd) gccessful from an experimental point of view. The intention
numbern + 1 of votes can be easily obtained by doublingys this study is to gain a deeper understanding of how this
vote v; or eliminating votev;. When the majority vote is method works, and to examine its mode of operation, so that
taken, the recognition and error rates of the new combinatiofjg can have confidence in its performance when applied to
would be both lower (higher) than those of the original, agifferent data and/or experts. By this detailed analysis, we have

has been stated in Section V. The advantage in eliminating|argely achieved our objective of providing a more reliable
versus doublingy; depends on the pairwise products of theasis for using this method. This is especially true when the
odds ratios. If decisions of the individual experts can be assumed to be
independent. However, we note that even in the absence of
rirg >rpry forall kUl #4,j (6.3) this assumption, the experimental results do reflect the trends

predicted by the theoretical considerations.

then doublingv; produces a higher recognition rate than |n the course of our research, we have derived many
eliminating v;, for both even and odd values of conclusions about the expected behavior of the consensus.
2) When condition (6.3) is satisfied, the gain in recognitioNevertheless, a number of decisions remain with the user. For
rate is more significant for an odd number than for an evesxample, the choice of an odd or even number of experts would
numbern of experts, given that the experts have similar leveliepend on the requirements of the specific application. The
of performance. This is due to the difference in the number fdrmer produces a higher recognition rate, and the consensus

terms involved in the calculation of the probabilities. of 2n — 1 experts would outperform that & experts in this
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respect. However, it is often the case in pattern recognitiamd the researchers at CEDAR, Buffalo, NY, for making their
applications that errors are much more costly than rejectiomegognition results publicly accessible.

for example, in the precision index set by the Institute for
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