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Pattern Recognition: An Analysis
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Abstract—Recently, it has been demonstrated that combining
the decisions of several classifiers can lead to better recognition
results. The combination can be implemented using a variety of
strategies, among which majority vote is by far the simplest, and
yet it has been found to be just as effective as more complicated
schemes in improving the recognition results. However, all the
results reported thus far on combinations of classifiers have
been experimental in nature. The intention of this research is
to examine the mode of operation of the majority vote method in
order to gain a deeper understanding of how and why it works, so
that a more solid basis can be provided for its future applications
to different data and/or domains. In the course of our research,
we have analyzed this method from its foundations and obtained
many new and original results regarding its behavior. Particular
attention has been directed toward the changes in the correct
and error rates when classifiers are added, and conditions are
derived under which their addition/elimination would be valid for
the specific objectives of the application. At the same time, our
theoretical findings are compared against experimental results,
and these results do reflect the trends predicted by the theoretical
considerations.

Index Terms—Character recognition, classifier combination,
decision combination, majority vote problem.

I. INTRODUCTION

I N THE domain of OCR, there has been a recent movement
toward combining the decisions of several classifiers in

order to arrive at improved recognition results. The com-
bination can be implemented using a variety of strategies.
In [11] and [14], the combined decision is obtained by a
majority vote of the individual classifiers, while variations of
this scheme are implemented in [6], [11], and [15]. When
the individual classifiers produce ranked lists of decisions,
these rankings can be used to obtain combined decisions
[9]. Further developments in deriving a combined decision
include statistical approaches [4], [10], formulations based
on Bayesian and Dempster–Shafer theories of evidence [4],

Manuscript received April 1, 1994; revised August 29, 1996. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada, the National Networks of Centres of Excellence program of Canada,
and the FCAR program of the Ministry of Education of the Province of
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[15], and neural networks [12]. In all these cases, it was
found that using a combination of classifiers has resulted in
a remarkable improvement in the recognition results, and this
is true regardless of whether the classifiers are independent or
make use of orthogonal features.

Among all the combination methods, majority vote is by
far the simplest for implementation. It does not assume prior
knowledge of the behavior of the individual classifiers (also
calledexperts), and it does not require training on large quanti-
ties of representative recognition results from the experts. Yet,
in a very recent study [12], when five combination strategies
(majority vote, Bayesian, logistic regression, fuzzy integral,
and neural network) are employed on seven classifiers, the
results show that the majority vote is just as effective as the
other more complicated schemes in improving the recognition
rate for the data set used.

The last point deserves some attention, because all the
results reported thus far on the majority vote have been
experimental in nature—given a particular set of classifiers
on a certain database, certain results have been obtained.
Consequently, there is no assurance that similar improvements
can be obtained when a different database is used, or when
a different set of classifiers are combined. Therefore this
method requires a closer scrutiny, so that its behavior can be
better understood and used to advantage not only in character
recognition, but also in other pattern recognition areas where a
multiplicity of algorithms exist, each producing a set of well-
defined outcomes. Examples of these areas could be speech
recognition and other problems in computer vision where it
may not be realistic to expect large volumes of data for training
classifier combinations. For these applications, majority vote
is the most appropriate option.

This work is concerned with understandinghowandwhythe
combination of expert opinions by majority vote can produce
improved recognition results, and the assumptions under which
this can be expected to happen. To achieve this purpose, we
will examine the topic starting from its logical foundations,
that is, from the classical voting problem. For this particular
problem, the binomial distribution has been used to determine
the probabilities of consensus, but only for an odd number of
voters. We will extend these results to even numbers of voters,
and compare their results with those for odd numbers so that
an ordering of probabilities can be obtained for combining
different numbers of experts.
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From this model, we will relax the assumptions of equal
probabilities among the experts and examine the effects to
the consensus created by the addition of new experts. This
problem is studied without assuming independence of the
experts whenever possible. With this assumption, conditions
are derived as towhen these additions would improve the
results of the combination. Interestingly, these conditions
are related to the widely studied notion of the odds ratio.
Throughout the paper, we will compare our findings against
experimental results.

II. THE VOTING PROBLEM

In the rest of this paper, we assume thatclassifiers or
experts are deployed, and that for each input sample, each
expert produces a unique decision regarding the identity of the
sample. This identity could be one of the allowable classes,
or a rejection when no such identity is considered possible. In
the event that the decision can contain multiple choices, the
top choice would be selected. In combining the decisions of
the experts, the sample is assigned the class for which there
is a consensus, or when at leastof the experts are agreed
on the identity, where

if is even

if is odd.

Otherwise, the sample is rejected. Since there can be more than
two classes, the combined decision is correct when a majority
of the experts are correct, but wrong when a majority of the
decisions are wrongand they agree. A rejection is considered
neither correct nor wrong, so it is equivalent to a neutral
position or an abstention. For the problem we are examining,
there is only one correct answer but many wrong ones for each
individual. Consequently, there will be cases where the group
has no consensus, leading to a rejection. This possibility of
a rejection by the group would exist whether each individual
has the rejection option or not, and so we include the reject
option for each expert for the sake of generality.

While each classifier has the possibilities of being correct,
wrong, or neutral, the combined (correct) recognition rate is
really the probability of the consensus being correct, assuming
each vote to have only two values—correct or not. In other
words, errors and rejections can be grouped together as the
other possibility when the correct rate is considered. However,
in this case, the overall error rate of the combination cannot
be calculated directly from the error rate of each classifier.
Due to the nature of consensus, the combined decision is
wrong only when a majority of the votes are wrongand they
make the same mistake. Of course, this is a strength of this
combination method—due to the large number of possible
mistakes, the majority would not often make the same one.
As a result of this need for consensus, we can only calculate
the probability of the consensus committing a particular error
from the individual probabilities of committing the same error.
To assess this particular (mistaken) probability of consensus,
we can also consider each vote to have only two values—it
makes this particular mistake or not.

To avoid confusion in dealing with our problem, we should
distinguish between the number of choices available to the
voter (expert), and the number of values his/her vote would
have. In the example of possible classes, the expert would
have choices for each classification. However, when
we consider the recognition rate of the consensus, each vote
would have only two values—correct or not. The probability
of this vote being correct would coincide with the recognition
rate of the expert, while the other option has probability

. Analogously, when we consider the probability of
the consensus making a particular mistake (misclassifying a
sample of “2” as “3,” for example), the two values of each
vote are whether the expert makes this particular mistake or
not, and these values have probabilitiesand , given that
the expert makes this misclassification with probability.

Consequently, both cases reduce to the problem of deter-
mining the probability of consensus when each vote has only
two alternatives, and so they can be considered as the same
problem with different parameters. With this situation of two
alternatives, the subject had been much studied as the classical
voting problem under the following assumptions:

A1: The number of voters is odd.
A2: Each voter has the same probabilityof voting one

way (for example, correctly).
A3: The individual decisions are independent.
Of these assumptions, A1 will be eliminated from the outset,

with interesting consequences. Then new results are obtained
from the cases when A2 is not assumed, and subsequently we
will examine the consequences when A3 is relaxed.

The different premises between the classical problem and
the current one are summarized in Table I, whereis the
number of possible recognition classes for the current problem.

We will use and to denote the probabilities
of the consensus being correct and wrong respectively. One
consequence of the last difference shown in Table I lies in
the behavior of as changes, or vice versa. In
the original problem, , so they would
change in opposite directions, and maximizing one quantity
would minimize the other. This is no longer true when the
consensus has the reject option, since .
For this case, decreasing does not necessarily imply
that would increase correspondingly (since the reject
probability can increase). The nature and magnitude of the
changes are found to be related to whetheris even or
odd. These are some of the aspects that will be presented
in Section III.

III. GENERAL RESULTS ON THEPROBABILITY OF CONSENSUS

If we assume that independent experts have the same
probability of being correct, then the probability of the
consensus being correct, denoted by , can be computed
using the binomial distribution as

where the value of is as defined in Section II. Condorcet
[3] is usually credited with first recognizing this fact, and his
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TABLE I
DIFFERENCESBETWEEN CLASSICAL AND CURRENT PROBLEMS

work became the basis of much modern research in voting
and decision making (for example, [1] and [7]). The following
theorem, attributed to him, has provided validity to the belief
that the judgment of a group is superior to those of individuals
provided the individuals have reasonable competence.

Theorem 0: Suppose is odd and . Then the
following are true:

1) If then is monotonically increasing in
and as

2) If then is monotonically decreasing in
and as

3) If then for all

The following recursive formula is given in [8], but the
derivation is unpublished.

Corollary to Theorem 0:If is odd and then

In the rest of this section, we will generalize the above
theorem to even as well as odd values ofThe following
theorem and corollaries apply when

Theorem 1:

and

Proof:

since

and

since
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TABLE II
VALUES OF PC(n) FOR DIFFERENT VALUES OF p AND n

The next three corollaries are direct consequences of The-
orem 1.

Corollary 1:

Proof: From Theorem 1,

since

We note that this conclusion coincides with that of Corollary
to Theorem 0 when the latter result has been simplified.

Corollary 2:

Corollary 3:

From the preceding results, we can deduce the following
remarks when

1) As immediate consequences of Theorem 1,

and

for all and

2) When even numbers of experts are combined,
is monotonically increasing if which is

true for all if Conversely, is monotonically
decreasing with if which is true for all
if When however, the behavior of

would depend on the relative magnitudes ofand

Suppose Then since
while since

and since This represents a departure
from the odd cases, where is monotonically decreasing
for all These differences can be seen in Table II,
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TABLE III
(a) PERFORMANCES OFINDIVIDUAL EXPERTS ON CENPARMI
DATABASE AND (b) PERFORMANCES OFSOME COMBINATIONS

(a)

(b)

where values of are shown for different values of
and

3) When both even and odd numbers of experts are con-
sidered together, we know from Remark 1) that

and for all
The relation between and is given by
Corollary 3, from which it follows that

iff

and iff the reverse inequality
holds for Since is increasing and approaches

as for all
if

For example, when since
while the opposite holds for .

4) As a consequence of Remarks 1) and 2), we can conclude
that when

for all For example,

and these are shown by the results in Table II where
5) Remark 4) defines the ordering of for sufficiently

large values of We now consider small values of to
consider the probabilities of consensus errors. If the
following inequalities are true for all .

a) by Theorem 0;
b) by Corollary 2; and
c) by Theorem 1.
To obtain a complete ordering of these probabilities, it

remains to compare with . From
Theorem 1,

so when
which is true when

Since is monotonically increasing with a minimum value
when if is

below this value.
For these small values of the consensus probabilities are

ordered as

for all . For example, we would have

From Table II, it can be seen that this is true for but
not for which exceeds the threshold value

6) According to Theorem 1,
By considering the convergence of the

series we can conclude that as
for For

the sequence can be shown to
converge to 0 by comparison with Therefore

approaches the same limit as for all
values of in (0, 1).
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IV. A PPLICATION TO PATTERN RECOGNITION

The discussion in Section III presents a mathematical model
for comparing the recognition rates obtained from the ma-
jority vote of independent experts when each expert has
recognition rate . We assume the experts to have reasonable
performance, so that is greater than the threshold given
above, in which case the ordering of the consensus probabil-
ities is stated in Remark 4). In particular, it follows that a
combination of an even number of experts would yield a
recognition rate that is lower than those obtained from both

and experts.
In pattern recognition applications, it is also an important

consideration that the results should have low error or substitu-
tion rates. For these error rates, we can consider the consensus
probabilities for small . If the probabilities of each expert
making a particular mistake are approximately equal to,
then we can certainly assume that , in which case a
combination of an even number of experts would be less
likely to commit this error than the consensus of or

experts. With this assumption of approximate uniformity,
the same conclusion regarding the number of experts can be
applied to the overall substitution rates, which are after all the
summation of the probabilities of particular errors.

The assumption of equal probabilities has made possible the
computation of exact differences in the likelihoods of consen-
sus, whether it is the correct or wrong decision. Admittedly, the
assumption of equal probability, while convenient in theory,
is impossible to achieve in practice—different experts cannot
be expected to operate with equal probabilities in real-life
situations. For this reason, we will examine the consequences
of relaxing this condition in the next section. Actually, the
ordering of the probabilities derived in Remarks 4) and 5)
has been demonstrated in experiments where the performances
of experts do differ. The results of these experiments are
described below.

In the first experiment, six classifiers are applied to the
recognition of handwritten numerals from the CENPARMI
database. While the first four recognizers [14] had been
developed independently of one another, the last two experts
[5] are very similar in their behavior because they are adapted
to the same feature vector. The performances of the individual
methods are shown in Table III(a) and part of the combined
results are given in Table III(b). The results shown in these
tables differ to a certain extent from those presented in [5] for
two reasons. The substitution rate of E2 has been decreased,
and integer votes are used here. In the previous work, a fraction
of a vote is assigned to each candidate class of E1 when
this expert cannot differentiate between two or three classes,
whereas in the present context this would be considered to be
a rejection by this expert.

From these tables, it is clear that the performances of the
experts differ significantly, but the combined recognition and
substitution rates mostly follow the patterns stated in Remarks
5) and 6). For example, E2 6 produces lower recognition
and substitution rates than E2 3 6 or E2 5 6, while
E2 3 6 has higher rates than E2 3 4 6, which has
lower rates than E1 2 3 4 6, and so on.

TABLE IV
PERFORMANCES OFCEDAR CLASSIFIERS ON BS DATABASE

In the second experiment, the data consists of the recog-
nition results obtained by seven classification algorithms de-
veloped at CEDAR in Buffalo, NY. The test set BS contains
2711 handwritten numerals extracted from United States Postal
Service mailpieces, and these are contained on CEDAR CD-
ROM together with the recognition results. Fuller descriptions
of the classifiers are given in [12]. When only the top choice
is considered, the individual algorithms produce the results
shown in Table IV with no rejections, i.e., each input sample
is assigned its nearest class.

These classifiers have 120 possible combinations, whose
recognition results on the BS database are shown in Fig. 1,
where the scatter plot shows the recognition versus the substi-
tution rates. The two disjoint clusters of points (one resulting
from combinations of even numbers of experts and the other
from odd numbers) tend to illustrate the comments made
above. Combining the decisions of odd numbers of experts
produces higher correct as well as higher error rates, so the
corresponding points in Fig. 1 are positioned to the upper right,
while the even combinations result in points located to the left
and below (representing lower substitution and correct rates).
The tendencies of these combinations will be further developed
in the next section, in which we will consider the combinations
of experts with unequal probabilities of being correct (which
is the case for this example).

V. RELAXATION OF EQUAL PROBABILITY ASSUMPTION

In Section III of this paper, we have assumed equal proba-
bilities of correct classification, which has made possible the
determination of the exact differences between the consensus
probabilities. Since this assumption cannot be expected to be
true in practice, in this section we derive comparisons between
the consensus probabilities when the assumption of uniform

is relaxed. In particular, we will examine the differences
created by the addition of votes to a group of voters (even as
well as odd in number). Given the unequal probabilities, the
exact differences would depend on the individual probabilities,
but thesignof these differences can be easily determined when
one vote is added. When two votes are added, the change in the
consensus probabilities will be expressed precisely in terms of
the individual probabilities. Then, by using a theorem in Graph
Theory, the sign of this difference is found to depend on the
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Fig. 1. Combined results of CEDAR classifiers.

TABLE V
EFFECT OF ADDING ONE VOTE TO 2n VOTES

TABLE VI
EFFECT OF ADDING ONE VOTE TO 2n + 1 VOTES

familiar notion of the odds ratio. These results will be derived
and discussed below.

A. Addition of One Vote

We will first consider the effect (on the probability of the
group decision being correct or wrong) of adding one vote to

and votes respectively. In each case, the addition of
the new vote would make a difference only when the original
group decision had been split in a “marginal” way, so that the
new vote could tip the balance.

When the original group has voters, this would be the
case if of the votes had been in agreement—either they
are correct, or they make the same mistake. Depending on the
decision of the new vote, the possible changes are summarized

in Table V. When a change does occur, it is in the direction of
reducing the rejection rate, changing it into a correct decision
part of the time and an error in the other cases. In other words,
adding one vote to (which also changes the number of
voters from even to odd) has the effect of reducing the degree
of “indecision,” changing it into correct or wrong decisions.

On the other hand, the addition of one vote to
votes would change the group decision only if of the
original votes are in agreement, and the new vote disagrees,
thus changing the original majority to a lack of consensus.
These possibilities are summarized in Table VI. The end result
is that the rejection rate would increase, while both the correct
and error rates would decrease. We can consider this to be
a result of changing an odd number of voters into an even
number, when more “tied” votes may occur.
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TABLE VII
EFFECT OF ADDING TWO VOTES TO 2n VOTES

The trends shown in Tables V and VI are true regardless of
the values of the probabilities of the individual experts. The
individual probabilities, however, do determine the magnitudes
of the changes. If each expert is correct much more often than
(he/she is) wrong, then the probability of Case 1 is expected to
be greater than that of Case 2 whether the number of voters is
even or odd. Since no assumption on the independence of the
experts has been made, these results would always be valid.

B. Addition of 2 Votes to Votes

If we consider the addition of two votes to an even (or odd)
number of votes as the repeated addition of one vote, then it
is not clear what the net effect of the two additions would be,
since the second step appears to reverse the trend of the first.
For this reason, we have to examine the results when the two
votes are added together to an existing group.

Suppose the original voters have probabilities
of being correct, and for the new votes these probabilities

are and . The addition of the new votes would affect the
correct rate only in the cases shown in Table VII.

In Case 1, the two new correct votes would change the
original tied vote into a majority, while in Case 2 the new votes
would deprive the original decision of a majority. Since the
first case causes the correct rate to increase while the second
causes it to decrease, the net change to this rate depends on the
relative probabilities of the two cases. We will calculate the
probability of each case when the expert opinions are assumed
to be independent.

Let denote the set of vectors of the form
where for each ,

for terms
for the other terms

and let be the set of vectors of the form
where for each ,

for terms
for terms.

Then for every vector in , there exist exactly vectors
in that differ from at only one component. These
vectors of are obtained by replacing each of the
terms in by . Similarly, for each in there are
vectors in that differ from at only one component, each
of which is obtained by changing a in into Since

In order to determine the difference between the probabili-
ties of Case 1 and Case 2 in Table VII, we prove and use the
following result:

Theorem 2: There exists a one-to-one functionfrom
into such that for every in and differ at only
one component.

Proof: Define to be a graph whose vertices are the set
of all vectors in and every vertex in is adjacent
to all vertices that differ from at only one component.
Then is a bipartite graph in which every vertex of is
adjacent to vertices in and every vertex of is adjacent
to vertices in The function corresponds to a
complete matching of to , and its existence reduces to
the well-known “marriage” problem.

By Hall’s Theorem, such a matching exists iff every subset
of vertices in must be collectively adjacent to at least

distinct vertices in . We now show that this condition is
satisfied in the present context. Suppose the subset ofvertices
in is If we list all the vertices in
that is collectively adjacent to, we obtain vertices
by the comment in the last paragraph. We denote this set of
(not necessarily distinct) vertices by , and we need
to show that there are at leastdistinct vertices in .

If has less than distinct vertices, then at least one
vertex must appear in more than times, implying
that must be adjacent to more than vertices in
(since each occurrence of corresponds to an adjacent vertex
in ). This is a contradiction, and so the hypothesis of Hall’s
Theorem must be satisfied, or the functionexists.

We now use this theorem to compare the probabilities of
Cases 1 and 2 in Table VII, which we denote by

and respectively. The net
increase in the correct rate would be

(5.1)

Given the existence of by Theorem 2, each term in the
second sum has a corresponding term in the first sum such
that the 2 terms differ at only one component. Hence

if

or

for all (5.2)

In other words, the addition of two votes to votes would
increase the correct rate if the product of the odds ratio of the
two new votes is not less than the odds ratio of any original
vote. Since the odds ratio of any expert should be greater
than one when the correct rate is considered, this condition is
easy to satisfy. In the event that all the probabilities are equal,
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TABLE VIII
EFFECT OF ADDING TWO VOTES TO 2n + 1 VOTES

this condition coincides with the one derived in Remark 2) of
Section III. Furthermore (5.2) is a sufficient, but not necessary,
condition. The correct rate is more likely to increase with the
addition of two votes, for the following reasons.

i) The first sum in (5.1) contains more terms than the
second, and

ii) Each term in the first sum is the product of
probabilities of being correct (and probabilities of being
wrong), while each term in the second sum is the product
of and such probabilities, respectively. Since the
probability of being correct is usually greater than that of being
wrong, the first sum is expected to be greater than the second.
In Example 5.2.1 below, it can be seen that the correct rate
increases when condition (5.2) is satisfied, even though the two
additional votes do not have better performance on their own.

Example 5.2.1:Suppose
and while and Then (5.2) is
satisfied for and in this case
while

We note that analogous arguments can be applied to consider
the change in the probability of making a mistake when we add
two votes to Suppose the original votes have probabilities

of making this mistake while the new votes
have probabilities and If we replace the notion of
“being correct” in the above discussion with that of “making
this mistake,” the same process of reasoning would yield the
result that the probability of making this mistake increases, or

if

for all (5.3)

If the probability of making a mistake is very small for each
expert, then inequality (5.3) would rarely be true. However,
(5.3) is a sufficient, but not necessary, condition. Actually,
the sign of
cannot be determineda priori, as it would depend on the
values of ’s and ’s. This is true due to the occurrence
of two opposing factors. In the expression for this difference
[analogous to condition (5.1)], the first sum contains more
terms than the second. At the same time, it is clear that the
individual terms in the first sum are smaller than those in the
second when the ’s and ’s are very small, since each term
in the first sum is the product of of these small values
while each term in the second is the product of only of
them. As a result, the sign of the difference has to depend on
the probabilities involved.

Therefore we can conclude that when two votes are added
to votes, it is much more probable for the correct rate to

increase, while the change in the error rate would depend on
the individual error rates.

C. Addition of Two Votes to Votes

There are two main differences between this case and that of
Section V-B. The first difference is in the changes of decisions
that can be caused by the addition of two votes in this instance,
and the second is in the conditions equivalent to (5.2) and
(5.3) that would apply in this case.

First, the addition of two votes to can cause a change
in the correct rate under the conditions of Table VIII.

As in Section V-B, we let and
denote the probabilities of being correct. Letbe the set of

vectors of the form such that

for terms
for terms.

Analogously, we let represent the set of all vectors
of the form in which

for terms
for terms.

Then and have the same cardinality, and the change in
the correct rate is

(5.4)

which is positive, or the correct rate increases, when the odds
ratios satisfy the inequality

for all (5.5)

In the case of equal probabilities, this conclusion coincides
with conclusion 1) of Theorem 0. Furthermore, sinceand

contain the same number of vectors, we can also conclude
that the correct rate would decrease if inequality (5.5) were
reversed.

Example 5.3.1:Suppose
and while and Then

condition (5.5) is satisfied for and in this case
while
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Example 5.3.2:Suppose and
while Then

for

In fact, for this example, the probabilities of being correct are
0.8050 and 0.7971, respectively, before and after the addition
of the two new votes.

To consider the probability of making a mistake, we can let
and be the probabilities of making

the mistake as before. By similar reasoning, we can conclude
that the net change in the probability of making this mistake,
denoted by

is positive if

for all (5.6)

and the change is negative if the reverse inequality holds. Due
to the small values of the odds ratios of making a mistake,
condition (5.6) would rarely be true.

We now note the second difference between adding two
votes to and to votes. This lies in the values of
the changes in the correct rates. Suppose the condition for the
change being positive is satisfied, i.e., condition (5.5) is true.
Then a comparison of the expressions in (5.1) and (5.4) would
indicate the former to have a higher value when the’s and

’s have similar values in both expressions. This is due to
the fact that the expression in (5.1) contains a number of extra
terms with positive signs. In other words, adding two votes
to votes would be more effective in increasing the correct
rate than the addition of two votes to , given similar
probabilities of being correct. This can be seen in the results
of Examples 1 and 2, where while

In the case of equal probabilities,
this can also be observed in Table II, where, for for
example, while

A difference also exists between the changes in the proba-
bilities of making a mistake when two votes are added to
and to votes. We have already made the observation that
the direction of the change in the first case would depend on
the values of s and s When two votes are added to an
odd number of votes, however, it is much more likely for the
error rate to decrease. In this instance,

is expressed as the
difference of two sums having an equal number of terms, and
the terms in the first sum should be smaller than those in the
second when the s and s are very small (as explained at the
end of Section V-B). It follows that

when two votes
are added to an odd number of votes, while this statement
cannot be made if the original number of votes is even.

This section can be summarized briefly as follows.
1) Adding one vote to an even number of votes increases

both the correct and error rates while reducing the rejection

rate. Exactly the opposite results are obtained when one vote
is added to an odd number.

2) Adding two votes to an even or odd number of votes
would increase the correct rate if the odds ratios satisfy
conditions (5.2) and (5.5), respectively. Furthermore, adding
two votes to an even number would be more effective in
increasing the correct rate than adding the votes to an odd
number, given similar probabilities. However, if reducing the
error rate is the objective, then more definite gains can be
obtained in the second case.

Interestingly, these conclusions can be observed in Fig. 1,
where results of combining the CEDAR classifiers are shown.
When one vote is added to an even number, the result moves
toward the upper right (higher correct as well as error rates),
while the movement is in the opposite direction when one more
vote is added. This “zigzag” effect agrees with statement 1)
above. At the same time, it is clear that the increase from two
to four, then to six experts results in mainly an upward trend
(increase in recognition rate). This is in marked contrast to the
leftward movement (decrease in substitution rate) produced by
increasing the number of experts from three to five and seven.
These results are reflections of comment 2) above, and they
are particularly noteworthy given that the independence of the
expert opinions cannot be taken for granted in the experiment.

VI. V ARIATIONS ON MAJORITY VOTE

In the previous sections, we have derived many conclusions
about the expected behavior of the consensus. For example, it
is clear that the performance of the combined decision is an
increasing function of the number of experts, provided each
expert can perform at an appropriately high level. The number
of experts that can be used would naturally depend on practical
limitations, and adding new experts cannot always be readily
accomplished. For this reason, in this section we consider
means to combine the existing experts in more optimal ways,
and derive conditions as to which of the strategies would be
preferable for a given objective.

Suppose an odd number of experts are available and a higher
reliability is desired for the combination. This can be easily
accomplished in one of two ways: to eliminate one of the
experts from voting, or to double the vote of one of the experts
(i.e., assign a double weight to this vote). Either action would
change the number of votes from an odd to an even number,
so that the majority would produce more reliable results. Of
course, doubling one vote is equivalent to the addition of a
dependent vote, but it has been shown in Section V that adding
one vote to an odd number would decrease both the error and
correct rates regardless of independence. Analogously, when
an even number of votes are given, the same options can be
used to obtain an odd number of votes, when the recognition
rate would be higher.

An illustration of these results is given in Fig. 2, which
shows the substitution rates produced by all 56 combinations
of three and five CEDAR classifiers using majority vote,
together with the results obtained by doubling the best classi-
fier of each combination and eliminating the weakest before
voting. For clarity, the combinations are represented on the
axis in ascending order of their error rates by majority vote.
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Fig. 2. Substitution rates produced by odd combinations of CEDAR classifiers.

TABLE IX
EFFECT OF ELIMINATING v1 FROM 2n VOTES

TABLE X
EFFECT OF DOUBLING v2n AMONG 2n VOTES

Intuitively, one would double the “best” and eliminate
the “worst” algorithm, where these attributes are measured
according to the correct and error rates. For algorithms with no
rejections, the choice is obvious; otherwise the choice would
depend on the priority placed on higher recognition or lower
substitution rates. Apart from this consideration, it remains to
be resolved as to which alternative is better—to eliminate a
vote or to double one. In the rest of this section, we will derive
conditions to provide answers to this question.

A. The Even Case

As before, we suppose that the experts are independent
and they have correct probabilities For ease
of notation and without loss of generality, we suppose that
votes and are respectively the votes to be eliminated

and doubled. The elimination of would lead to increases in
both the correct and error rates in the cases shown in Table IX.

If we let the set of all vectors of the form
where for

for terms
for terms,

then the change in the correct rate resulting from the elimina-
tion of can be represented by

On the other hand, doubling the vote of would increase
both the correct and error rates in the cases indicated in
Table X.
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If we let the set of all vectors of the form
where for

for terms
for terms,

then the change in the correct rate when is doubled can
be given as

and therefore

In order to compare these two sums, we will define a 1-
1 function of onto . The set can be partitioned as

, where consists of all the elements in with
, and contains the rest.

If , then is also an element of , and we define
If then

where for for terms. Let
be the set of all such vectors and let be the set of

all vectors such that

for terms
for terms.

By rephrasing (in terms of transversal theory) the reasoning
used in the proof of Theorem 2, there exists a 1-1 function
of onto such that for every and differ
at exactly two entries. In other words, is obtained by
changing two of the ’s in into ’s.

Since every would have the form
with we can define We note
that is 1-1 because has this property, and is 1-1 on

since
It therefore follows that

if

for all

which is true if

(6.1)

If the reverse inequalities hold, then

Since changing rejects into correct classifications would
increase the recognition rate, we can conclude that when
conditions (6.1) are satisfied, eliminating would produce a
higher recognition rate than doubling , while the opposite
conclusion would be true if the inequalities were reversed.

Naturally, if we denote the odds ratio by , then
it is logical to consider these alternatives only when is
small and is large. In addition, when is doubled, then
larger values of should imply more improvement. On the

other hand, the elimination of should lead to better results
when is smaller. Therefore conditions (6.1) imply that the
significant entity is the product The ratios and
can vary in opposite directions without affecting the sign of the
difference
provided conditions (6.1) or their opposites are satisfied. It
also means that when is small enough compared to the
other odds ratios, a higher recognition rate can be obtained
from eliminating than doubling , while the reverse is
true when is relatively large.

If is the probability of expert making
a particular mistake, and we consider eliminatingversus
doubling , then the same reasoning would lead to

if

and the statement would also be true if all the inequalities
were reversed.

Example 6.1.1:Suppose
and Then

for and we expect
which is true since the

former equals 0.0502 while the latter has value 0.0549.
For the special case of a two-class recognition problem

in which there are no rejections, and so

Therefore if the
inequalities are satisfied for the ’s, it would imply that
eliminating is better than doubling The opposite
conclusion follows when the inequalities are reversed.

In order to test the applicability of the theoretical results to
a practical situation where the independence of experts cannot
be assumed, we consider the combinations of four experts
from Table III(a). The choice of four experts ensures that
condition (6.1) or its reverse inequality will always be satisfied.
Since experts E5 and E6 are highly correlated, combinations
containing both of these experts are not considered. For each
of the remaining nine combinations, refers to the first
expert in the combination and the last, and the value of

is shown in Table XI together with the
recognition rates when the vote of the expert with the highest
(lowest) recognition rate is doubled (eliminated).

It is encouraging that the experimental results generally
coincide with the theoretical conclusion: when doubling

produces higher recognition rate than eliminating, and
vice versa. The exceptions are in combinations four and six,
in which has very small magnitudes. It would be more
illuminating if recognition results on much larger databases
can be used.

B. The Odd Case

Given experts, it is possible to obtain more reliable
results from the combination by eliminating vote or dou-
bling . These actions will create changes in the marginal
cases shown in Tables XII and XIII, respectively. In order to
compare with ,
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TABLE XI
RESULTS OF DOUBLING v4 VERSUS ELIMINATING v1

TABLE XII
EFFECT OF ELIMINATING v1 FROM 2n + 1 VOTES

TABLE XIII
EFFECT OF DOUBLING v2n+1 AMONG 2n + 1 VOTES

we determine the probabilities of occurrence of Case 1 in these
tables.

If the set of all vectors of the form
where for

for terms
for terms

then
Suppose the set of all vectors of the form

such that for

for terms
for terms.

Then
In this case By a reasoning

similar to that used in the even case, there exists a 1-1
function of into which allows us to conclude that

if

for all (6.2)

When this is the case, a higher correct rate should result from
doubling than from eliminating

Since contains more terms than , no conclusion can
be drawn when the reverse inequalities hold. However, this
difference in the number of terms also implies that it is more
likely in general to have a higher recognition rate when
is doubled than when is eliminated. In addition, when
conditions (6.2) are satisfied, the difference in the probabilities
between the two alternatives is expected to be greater in the
odd case than the even one, given similar’s. This can be
seen by comparing the results of Examples 6.1.1 with those
of Example 6.2.1 given below.

Example 6.2.1:Suppose
and Then conditions

(6.2) are satisfied, and
while

Example 6.2.2:For an actual situation, we can consider the
five experts E1–E4 and E6 in Table III(a) of Section IV. The
odds ratios of these experts satisfy the condition
for so we expect doubling to produce a
higher recognition rate than eliminating, which is the case
experimentally since those results are 97.25% and 95.7%
respectively.
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Fig. 3. Performances of combinations of three classifiers.

Analogously, by applying the same reasoning to case 2
of Tables XII and XIII, we conclude that

if

for all

Therefore, when these conditions are satisfied, eliminating
would result in a lower error rate than doubling Again,
due to the different number of terms involved, it is more likely
that which
means the elimination of should produce a lower error rate
in general. This conclusion can also be observed in the odd
combinations of the classifiers shown in Fig. 2.

The results of this section can be summarized as follows.
1) From an odd (even) numberof experts, an even (odd)

number of votes can be easily obtained by doubling
vote or eliminating vote When the majority vote is
taken, the recognition and error rates of the new combinations
would be both lower (higher) than those of the original, as
has been stated in Section V. The advantage in eliminating
versus doubling depends on the pairwise products of the
odds ratios. If

for all (6.3)

then doubling produces a higher recognition rate than
eliminating , for both even and odd values of.

2) When condition (6.3) is satisfied, the gain in recognition
rate is more significant for an odd number than for an even
number of experts, given that the experts have similar levels
of performance. This is due to the difference in the number of
terms involved in the calculation of the probabilities.

3) When is odd, doubling should result in a higher
recognition rate even when the inequalities are not completely
satisfied, because of the different number of terms. For the
same reason, however, eliminating should generally pro-
duce a lower error rate.

4) When the inequalities in (6.3) are reversed, eliminating
would produce a higher recognition rate than doubling

when is even. In the event that is odd, the outcome would
depend on the value of as well as the individual probabilities
of the experts.

VII. CONCLUDING REMARKS

The majority voting method has been used to combine the
results of classifiers for character recognition, and it has been
successful from an experimental point of view. The intention
of this study is to gain a deeper understanding of how this
method works, and to examine its mode of operation, so that
we can have confidence in its performance when applied to
different data and/or experts. By this detailed analysis, we have
largely achieved our objective of providing a more reliable
basis for using this method. This is especially true when the
decisions of the individual experts can be assumed to be
independent. However, we note that even in the absence of
this assumption, the experimental results do reflect the trends
predicted by the theoretical considerations.

In the course of our research, we have derived many
conclusions about the expected behavior of the consensus.
Nevertheless, a number of decisions remain with the user. For
example, the choice of an odd or even number of experts would
depend on the requirements of the specific application. The
former produces a higher recognition rate, and the consensus
of experts would outperform that of experts in this
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respect. However, it is often the case in pattern recognition
applications that errors are much more costly than rejections;
for example, in the precision index set by the Institute for
Post and Telecommunication Policy (IPTP) of Japan, the cost
of an error is ten times that of a rejection [16]. If this is an
important factor, then the performance of an even number of
experts would be more reliable, and their number should be
incremented also by an even number at each subsequent stage
of refinement. If only an odd number of experts are available,
then the relative merits of doubling the best and eliminating
the weakest can be considered.

It should be pointed out that combining the decisions
of experts is not exactly a substitute for designing better
classifiers. As has been remarked in [5], it is a truism that
combinations of better algorithms tend to produce better
results. This is graphically depicted here in Fig. 3, in which the
performances of all combinations of three CEDAR classifiers
are shown. The classifiers are ranked from one to seven
according to their performance, with rank 1 for the best
classifier, and so on. The values on theaxis represent the
sum of the ranks for each combination, the recognition rate for
each combination is shown on the axis (on the left), and the
substitution rates are indicated on theaxis on the right. From
the behavior of the recognition and error rates as functions of
the sum of ranks, it is obvious that the development of superior
classifiers should remain an important objective.

Two points that may be related to the present work would be
the analysis of the consensus when the experts’ decisions are
dependent, and the theoretical analysis of other combination
methods. When the independence assumption is not applicable,
a general theoretical analysis of the behavior of majority vote
would be far too complex to be feasible (due to the very large
number of variables whose interrelations are unknown), and it
remains beyond the scope of this article. If the experts provide
point estimates with a multivariate normal joint distribution of
errors, then it has been shown [2] thatdependent experts are
worth the same as independent experts, where Under
these assumptions, the equivalent numberof independent ex-
perts is a concave (down) function ofand the upper limit for

(which depends on the common correlation) is quite low.
For example, even if cannot exceed four for any

Other combination methods that are more specific and
empirical in nature would be less likely to yield general
theoretical analysis, which remains a difficult problem. Each
combination method may need to be examined from its own
perspective. A method which can be explored is the combina-
tion by neural networks, because this method is derived from
a conceptual and mathematical framework. Recently, a one-
layer perceptron (without hidden layers) has been designed in
[13] to utilize concepts like weight sharing and weight decay,
and it has the capabilities of eliminating redundant classifiers
and dynamically selecting classifiers. Further advances may
be possible in this direction.
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