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Abstract

This paper presents a learning approach, i.e. negative correlation learning, for neural network ensembles. Unlike previous learning
approaches for neural network ensembles, negative correlation learning attempts to train individual networks in an ensemble and combines
them in the same learning process. In negative correlation learning, all the individual networks in the ensemble are trained simultaneously
and interactively through the correlation penalty terms in their error functions. Rather than producing unbiased individual networks whose
errors are uncorrelated, negative correlation learning can create negatively correlated networks to encourage specialisation and cooperation
among the individual networks. Empirical studies have been carried out to show why and how negative correlation learning works. The
experimental results show that negative correlation learning can produce neural network ensembles with good generalisation ability.q 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many real-world problems are too large and too complex
for a single monolithic system to solve alone. There are
many examples from both natural and artificial systems
that show that a composite system consisting of several
subsystems can reduce the total complexity of the system
while solving a difficult problem satisfactorily. The success
of neural network ensembles in improving a classifier’s
generalisation is a typical example (Yao & Liu, 1998).
However, designing neural network ensembles is a very
difficult task.

There are several methods of designing neural network
ensembles. Most of them follow the two-stage design
process (Sharkey, 1996): first generating individual
networks, and then combining them. Usually, the individual
networks are trained independent of each other. One of the
disadvantages of such an approach is the loss of interaction
among the individual networks during learning. There is no
feedback from the combination stage to the individual
design stage. It is possible that some of the independently
designed individual networks do not make much contribu-
tion to the whole ensemble.

This paper describes the negative correlation learning
approach to designing neural network ensembles. The idea
behind negative correlation learning is to encourage differ-
ent individual networks in an ensemble to learn different
parts or aspects of a training data so that the ensemble can
learn the whole training data better. Negative correlation
learning is different from previous work which trains the
individual networks independently or sequentially
(Drucker, Cortes, Jackel, LeCun & Vapnik, 1994; Perrone
& Cooper, 1993). In negative correlation learning, all the
individual networks in the ensemble are trained simulta-
neously through the correlation penalty terms in their
error functions. Negative correlation learning attempts to
train and combine individual networks in the same learning
process. That is, the goal of each individual training is to
generate the best result for the whole ensemble. Such an
approach is quite different from other ensemble approaches,
which separate the individual design from average proce-
dures.

Negative correlation learning is also different from the
mixtures-of-experts (ME) architecture (Jacobs, 1997) that
consists of a gating network and a number of expert
networks although ME architecture can also produce biased
individual networks whose estimates are negatively corre-
lated. Negative correlation learning does not need a separate
gating network. It uses a totally different error function. The
l parameter in negative correlation learning provides a
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convenient way to balance the bias-variance-covariance
trade-off (Liu & Yao, 1999). ME architecture does not
provide such control over the trade-off.

Empirical studies will be carried out in this paper on a
time series prediction problem, i.e. the chlorophyll-a predic-
tion in Lake Kasumigaura (Recknagel, Fukushima, Hana-
zato, Takamura & Wilson, 1999), to show why and how
negative correlation learning works. Subsequently negative
correlation learning will be tested on the Australian credit
card assessment problem. The experimental results show
that negative correlation learning can produce neural
network ensembles with good generalisation ability.

The rest of this paper is organised as follows: Section 2
describes negative correlation learning. Section 3 analyses
negative correlation learning on the chlorophyll-a predic-
tion problem. Section 4 presents the experiment results of
negative correlation learning on the Australian credit card
assessment problem and some discussions. Finally, Section
5 concludes with a summary of the paper and a few remarks.

2. Negative correlation learning

Suppose that we have a training set

D � { �x�1�;d�1��;…; �x�N�;d�N��}
wherex [ Rp

; d is a scalar, andN is the size of the training
set. The assumption that the outputd is a scalar has been
made merely to simplify exposition of ideas without loss of
generality. This section considers estimatingd by forming
an ensemble whose output is a simple averaging of outputs
of a set of neural networks

F�n� � 1
M

XM
i�1

Fi�n� �1�

whereM is the number of the individual neural networks in
the ensemble,Fi�n� is the output of networki on thenth
training pattern, andF�n� is the output of the ensemble on
the nth training pattern.

Negative correlation learning introduces a correlation
penalty term into the error function of each individual
network in the ensemble so that all the networks can be
trained simultaneously and interactively on the same train-
ing data setD. The error functionEi for network i in nega-
tive correlation learning is defined by

Ei � 1
N

XN
n�1

Ei�n� � 1
N

XN
n�1

1
2
�Fi�n�2 d�n��2 1

1
N

XN
n�1

lpi�n�

�2�
whereEi�n� is the value of the error function of networki at
presentation of thenth training pattern. The first term in the
right side of Eq. (2) is the empirical risk function of network
i. The second termpi is a correlation penalty function. The
purpose of minimisingpi is to negatively correlate each
network’s error with errors for the rest of the ensemble.

The parameter 0# l # 1 is used to adjust the strength of
the penalty. The penalty functionpi has the form:

pi�n� � �Fi�n�2 F�n��
X
j±i

�Fj�n�2 F�n�� �3�

The partial derivative ofEi�n� with respect to the output of
network i on thenth training pattern is

2Ei�n�
2Fi�n� � Fi�n�2 d�n�1 l

2pi�n�
2Fi�n�

� Fi�n�2 d�n�1 l
X
j±i

�Fj�n�2 F�n��

� Fi�n�2 d�n�2 l�Fi�n�2 F�n��
� �1 2 l��Fi�n�2 d�n��1 l�F�n�2 d�n�� �4�

where we have made use of the assumption thatF�n� has a
constant value with respect toFi�n�: The standard back-
propagation (BP) algorithm (Rumelhart, Hinton &
Williams, 1986) has been used for weight adjustments in
the mode of pattern-by-pattern updating. That is, weight
updating of all the individual networks is performed simul-
taneously using Eq. (4) after the presentation of each train-
ing pattern. One complete presentation of the entire training
set during the learning process is called anepoch. The nega-
tive correlation learning from Eq. (4) is a simple extension
to the standard BP algorithm. In fact, the only modification
that is needed is to calculate an extra term of the form
l�Fi�n�2 F�n�� for the ith network.

From Eqs. (2)–(4), we may make the following observa-
tions:

1. During the training process, all the individual networks
interact with each other through their penalty terms in the
error functions. Each networki minimises not only the
difference betweenFi�n� andd�n�; but also the difference
betweenF�n� and d�n�: That is, negative correlation
learning considers errors what all other networks have
learned while training a network.

2. Forl � 0:0; there are no correlation penalty terms in the
error functions of the individual networks, and the indi-
vidual networks are just trained independently. That is,
independent training for the individual networks is a
special case of negative correlation learning.

3. Forl � 1; from Eq. (4) we get

2Ei�n�
2Fi�n� � F�n�2 d�n� �5�

Note that the empirical risk function of the ensemble for
the nth training pattern is defined by

Eens�n� � 1
2

1
M

XM
i�1

Fi�n�2 d�n�
 !2

�6�

The partial derivative ofEens�n� with respect toFi on the
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nth training pattern is

2Eens�n�
2Fi�n� �

1
M

1
M

XM
i�1

Fi�n�2 d�n�
 !

� 1
M
�F�n�2 d�n��

�7�
In this case, we get

2Ei�n�
2Fi�n� /

2Eens�n�
2Fi�n� �8�

The minimisation of the empirical risk function of the
ensemble is achieved by minimising the error functions
of the individual networks. From this point of view,
negative correlation learning provides a novel way to
decompose the learning task of the ensemble into a
number of subtasks for different individual networks.

3. Correlations among the individual networks

This section analyses negative correlation learning on the
chlorophyll-a prediction in Lake Kasumigaura (Recknagel
et al., 1999) to show how and why negative correlation
learning works.

The chlorophyll-a prediction is a highly nonlinear
problem. Previous attempts using neural networks have
achieved only limited success (Recknagel et al., 1999).
According to Recknagel et al. (1999), the background of
the problem can be described as follows:

Lake Kasumigaura is situated in the south-eastern part of
Japan. It has a large and shallow water body where no
thermal stratification occurs. The annual water temperature
of the lake ranges from 4 to 308C in summer. Due to high
external and internal nutrient loadings, the primary produc-
tivity of the lake is extremely high,…, and favours harmful
blue–green algae such asMicrocystis spp, Oscillatoria and
Anabaena flos aquae. As the algal succession changes the
species abundance year by year, it is very difficult to
causally determine and predict algal blooms in Lake Kasu-
migaura.

Accurate prediction of chlorophyll-a and other blue–
green algae will no doubt be very useful in protecting the
fresh-water environment.

3.1. Experimental setup

The limnological time series for 3 years between 1984
and 1986 were used in our experiments. There are 360-
day data in each year. For each single day, the eight input
conditions include water temperature, light, rotifer density,
cladocera density, etc. The single output indicates the abun-
dance of chlorophyll-a. The data in 1984 and 1985 were
used as the training data to train the neural network ensem-
ble. Then the neural network ensemble was tested on the
1986 data. Using the 1986 data as the testing data was
suggested by Recknagel et al. (1999) because it represented
typical year for blooms ofMicrocystis. More details about
the data were given in (Recknagel et al., 1999).

As a pre-processing step, the original data were rescaled
linearly to between 0.1 and 0.9. The input to each individual
network consists of eight input conditions on the current day
and seven output conditions on the past seven days. It
should be pointed out that Recknagel et al. (1999) used a
5-vector input layer which included the current eight input
conditions and those 32 input conditions of the present 10,
20, 30 and 40 days previously. The reason for changing the
input is to reduce the number of input attributes and make
the chlorophyll-a prediction problem more meaningful in
the sense of time series prediction.

The normalised root-mean-square (RMS) errorE was
used to evaluate the performance of negative correlation
learning, which is determined by the RMS value of the
absolute prediction error forDt � 1; divided by the standard
deviation ofx�t� (Farmer & Sidorowich, 1987),

E � k�xpred�t;Dt�2 x�t 1 Dt��2l1=2

k�x 2 kxl�2l1=2 �9�

where xpred�t;Dt� is the prediction ofx�t 1 Dt� from the
current statex�t� and kxl represents the expectation ofx.
As indicated by Farmer and Sidorowich (1987), “ifE � 0,
the predictions are perfect;E � 1 indicates that the perfor-
mance is no better than a constant predictor
xpred�t;Dt� � kxl:”

The ensemble architecture used in the experiments has
four networks. Each individual network is a feedforward
network with one hidden layer. Both the hidden node func-
tion and the output node function are defined by the logistic
function

w�y� � 1
1 1 exp�2y� �10�

All the individual networks have ten hidden nodes. The
number of training epochs was set to 2000.

3.2. Experimental results

Table 1 shows the average results of negative correlation
learning and independent training (i.e.l � 0:0 in negative
correlation learning) over 25 runs for the chlorophyll-a
prediction problem. Each run of negative correlation
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Table 1
The average results of RMS errors produced by negative correlation learn-
ing with l � 1 and independent training (i.e.l � 0:0 in negative correla-
tion learning) over 25 runs for the chlorophyll-a prediction in Lake
Kasumigaura from 1984 to 1986. Mean, SD, Min and Max indicate the
mean value, standard deviation, minimum and maximum value, respec-
tively

l Year Mean SD Min Max

1 1984–1985 0.0161 0.0007 0.0150 0.0178
1986 0.0815 0.0076 0.0732 0.1013

0 1984–1985 0.0236 0.0029 0.0215 0.0366
1986 0.1168 0.0043 0.1099 0.1321



learning was from different initial weights. The value oft-
test between negative correlation learning and independent
training with 24 degrees of freedom is2 25.08 which is
significant ata � 0:005 by a two-tailed test, i.e. negative
correlation learning is statistically significantly better than
independent training.

In order to observe the effect of the correlation penalty
terms, Table 2 shows the correlations among the individual
networks trained by negative correlation learning with
different l values. The correlation between the networki
and the networkj is given by

Corij �

XL
l�1

XK
k�1

�F�k�i �l�2 �Fi�l���F�k�j �l�2 �Fj�l������������������������������������������������������������XL
l�1

XK
k�1

�F�k�i �l�2 �Fi�l��2
XL
l�1

XK
k�1

�F�k�i �l�2 �Fj�l��2
vuut

�11�

whereF�k�i �l� is the output of the networki on thelth pattern
in the testing set from thekth run, �Fi�l� represents the aver-
age output of the networki on thelth pattern in the testing
set,L is the number of patterns in the testing set, andK is the

number of runs. There are

4

2

 !
� 6

correlations among different pairs of networks.
The values of the correlations among the individual

networks had relatively larger positive values whenl was
0. They reduced to relatively smaller positive values whenl
was increased to 0.5. All of them became negative values
whenl was further increased to 1. Overall, the results indi-
cated that the neural networks trained by negative correla-
tion learning tend to be negatively correlated. Because every
individual network learns the same task in the independent
training, the correlations among them are generally positive.
In negative correlation learning, each individual network
learns different parts or aspects of the training data so that
the problem of correlated errors can be removed or alle-
viated. The empirical results match the theoretical analysis
(Clemen & Winkler, 1985): when individual networks in an
ensemble are unbiased, average procedures are most effec-
tive in combining them when errors in the individual
networks are negatively correlated and moderately effective
when the errors are uncorrelated. There is little to be gained
from average procedures when the errors are positively
correlated.

4. The Australian credit card assessment problem

This section describes the application of negative corre-
lation learning to the Australian credit card assessment
problem. The problem is to assess applications for credit
cards based on a number of attributes. There are 690
patterns in total. The output has two classes. The 14 attri-
butes include six numeric values and eight discrete ones, the
latter having from 2 to 14 possible values. The Australian
credit card assessment problem is a classification problem
that is different from the regression type of tasks, such as the
chlorophyll-a prediction problem, whose outputs are contin-
uous. The data set was obtained from the UCI machine
learning benchmark repository. It is available by anon-
ymous ftp at ics.uci.edu (128.195.1.1) in directory /pub/
machine-learning-databases.

4.1. Experimental setup

The data set was partitioned into two sets: a training set
and a testing set. The first 518 examples were used for the
training set, and the remaining 172 examples for the testing
set. The input attributes were rescaled to between 0.0 and
1.0 by a linear function. The output attributes of all the
problems were encoded using a 1-of-m output representa-
tion for m classes. The output with the highest activation
designated the class.

The ensemble architecture used in the experiments has
four networks. Each individual network is a feedforward
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Table 2
The correlations among the individual networks trained by negative corre-
lation learning with differentl values

0 Cor12 � 0:21972 Cor13 � 0:12713 Cor14 � 0:24398
Cor23 � 0:17909 Cor24 � 0:24678 Cor34 � 0:11826

0.25 Cor12 � 0:16973 Cor13 � 0:07010 Cor14 � 0:17965
Cor23 � 0:11519 Cor24 � 0:17438 Cor34 � 0:08683

0.5 Cor12 � 0:11468 Cor13 � 0:00593 Cor14 � 0:09827
Cor23 � 0:03867 Cor24 � 0:10509 Cor34 � 0:06474

0.75 Cor12 � 0:05957 Cor13 � 20:02466 Cor14 � 0:12302
Cor23 � 0:02883 Cor24 � 0:33109 Cor34 � 20:03763

1 Cor12 � 20:37871 Cor13 � 20:37402 Cor14 � 20:21235
Cor23 � 20:22528 Cor24 � 20:39379 Cor34 � 20:41414

Table 3
Comparison of error rates between negative correlation learning (l � 1:0)
and independent training (i.e.l � 0:0 in negative correlation learning) on
the Australian credit card assessment problem. The results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning. Mean,
SD, Min and Max indicate the mean value, standard deviation, minimum
and maximum value, respectively

Simple averaging Winner-takes-all

Training Test Test

l � 1:0 Mean 0.0938 0.1337 0.1195
SD 0.0031 0.0068 0.0052
Min 0.0869 0.1163 0.1105
Max 0.0985 0.1454 0.1279

l � 0:0 Mean 0.0883 0.1386 0.1384
SD 0.0308 0.0048 0.0049
Min 0.0792 0.1279 0.1279
Max 0.0965 0.1454 0.1512



network with one hidden layer. Both the hidden node func-
tion and the output node function are defined by the logistic
function in Eq. (10). All the individual networks have ten
hidden nodes. The number of training epochs was set to 250.
The strength parameterl was set to 1.0. These parameters
were chosen after limited preliminary experiments. They
are not meant to be optimal.

4.2. Experimental results

Table 3 shows the average results of negative correlation
learning over 25 runs. Each run of negative correlation
learning was from different initial weights. The ensemble
with the same initial weight setup was also trained using BP
without the correlation penalty terms (i.e.l � 0:0 in nega-
tive correlation learning). Results are also shown in Table 3.
For this problem, the simple averaging defined in Eq. (1)
was first applied to decide the output of the ensemble
system. For the simple averaging, it was surprising that
the results of negative correlation learning withl � 1:0
were similar to those of independent training. This phenom-
enon seems contradictory to the claim that the effect of the
correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts or aspects of
the training data. In order to verify and quantify this claim,
we compared the outputs of the individual networks trained

with the correlation penalty terms to those of the individual
networks trained without the correlation penalty terms.

Two notions were introduced to analyse negative correla-
tion learning. They are the correct response sets of indivi-
dual networks and their intersections. The correct response
setSi of the individual networki on the testing set consists of
all the patterns in the testing set which are classified
correctly by the individual networki. Let Vi denote the
size of setSi ; andVi1i2…ik denote the size of setSi1 > Si2 >
…> Sik : Table 4 shows the sizes of the correct response sets
of individual networks and their intersections on the testing
set, where the individual networks were, respectively,
created by negative correlation learning and independent
training. It is evident from Table 4 that the different indivi-
dual networks created by negative correlation learning were
able to specialise to different parts of the testing set. For
instance, in Table 4 the sizes of both correct response setsS2

andS4 atl � 1:0 were 143, but the size of their intersection
S2 > S4 was 133. The size ofS1 > S2 > S3 > S4 was only
113. In contrast, the individual networks in the ensemble
created by independent training were quite similar. The
sizes of correct response setsS1, S2, S3, andS4 at l � 0:0
were from 146 to 149, while the size of their intersection
S1 > S2 > S3 > S4 reached 146. There were only three
different patterns correctly classified by the four individual
networks in the ensemble.

In simple averaging, all the individual networks have the
same combination weights and are treated equally.
However, not all the networks are equally important.
Because different individual networks created by negative
correlation learning were able to specialise to different parts
of the testing set, only the outputs of these specialists should
be considered to make the final decision of the ensemble for
this part of the testing set. In this experiment, a winner-
takes-all method was applied to select such networks. For
each pattern of the testing set, the output of the ensemble
was only decided by the network whose output had the
highest activation. Table 3 shows the average results of
the negative correlation learning over 25 runs using the
winner-takes-all combination method. The winner-takes-
all combination method improved the negative correlation
learning significantly because there were good and poor
networks for each pattern in the testing set and winner-
takes-all selected the best one. However it did not improved
the independent training much because the individual
networks created by the independent training were all simi-
lar to each other.

Table 5 compares the results of negative correlation
learning with those produced by other neural and nonneural
algorithms, where EPNet is an evolutionary system for
designing neural networks (Yao & Liu, 1997) and Evo-
En-RLS forms the final results by combining all the indivi-
duals in the last generation in EPNet based on the recursive
least-square algorithm (Yao & Liu, 1998). The other algo-
rithms represent the best 11 out of the 23 algorithms tested
by Michie et al. (1994). Although negative correlation
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Table 4
The sizes of the correct response sets of individual networks created respec-
tively by negative correlation learning (l � 1:0) and independent training
(i.e.l � 0:0 in negative correlation learning) on the testing set and the sizes
of their intersections for the Australian credit card assessment problem. The
results were obtained from the first run among the 25 runs

l � 1:0 V1 � 147 V2 � 143 V3 � 138
V4 � 143 V12 � 138 V13 � 124
V14 � 141 V23 � 116 V24 � 133
V34 � 123 V123� 115 V124� 133
V134� 121 V234� 113 V1234� 113

l � 0:0 V1 � 149 V2 � 147 V3 � 148
V4 � 148 V12 � 147 V13 � 147
V14 � 147 V23 � 147 V24 � 146
V34 � 146 V123� 147 V124� 146
V134� 146 V234� 146 V1234� 146

Table 5
Comparison among negative correlation learning (NCL), EPNet (Yao &
Liu, 1997), an evolutionary ensemble learning algorithm (Evo-En-RLS)
(Yao & Liu, 1998), and others (Michie, Spiegelhalter & Taylor, 1994) in
terms of the average testing error rate for the Australian credit card assess-
ment problem. TER stands for Testing Error Rate in the table

Algorithm TER Algorithm TER

NCL 0.120 DIPOL92 0.141
EPNet 0.115 Discrim 0.141
Evo-En-RLS 0.095 Logdisc 0.141
Cal5 0.131 Cart 0.145
Itrule 0.137 RBF 0.145
Castle 0.148 NaiveBay 0.151
IndCART 0.152 BP 0.154



learning performed slightly worse than EPNet and Evo-En-
RLS, it was significantly faster in terms of training time.
Negative correlation learning performed better than all other
algorithms.

5. Conclusions

This paper first introduces the negative correlation learn-
ing approach to designing neural network ensembles. Then
it analyses negative correlation learning in terms of correla-
tions on the chlorophyll-a prediction problem. Unlike other
ensemble approaches which try to create unbiased indivi-
dual networks whose errors are uncorrelated, negative
correlation learning can produce individual networks
whose errors tend to be negatively correlated. For regression
type of tasks, such as the chlorophyll-a prediction, only
simple average combination method was investigated
since winner-takes-all is not suitable. For classification
type of tasks, such as the Australian credit card assessment
problem, both simple average and winner-takes-all combi-
nation methods were investigated. Compared with simple
averaging, winner-takes-all fits negative correlation learn-
ing well because only the best individual rather than all
individuals for each pattern is considered to make the final
decision of the ensemble.

There are, however, some issues that need resolving. The
architectures of the ensembles and thel parameter in nega-
tive correlation learning are predefined at the moment. One
of the future improvements to negative correlation learning
would be to make them adaptive.
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