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Abstract

This paper presents a learning approach, i.e. negative correlation learning, for neural network ensembles. Unlike previous learning
approaches for neural network ensembles, negative correlation learning attempts to train individual networks in an ensemble and combines
them in the same learning process. In negative correlation learning, all the individual networks in the ensemble are trained simultaneously
and interactively through the correlation penalty terms in their error functions. Rather than producing unbiased individual networks whose
errors are uncorrelated, negative correlation learning can create negatively correlated networks to encourage specialisation and cooperatior
among the individual networks. Empirical studies have been carried out to show why and how negative correlation learning works. The
experimental results show that negative correlation learning can produce neural network ensembles with good generalisatiohslity.
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1. Introduction This paper describes the negative correlation learning
approach to designing neural network ensembles. The idea
Many real-world problems are too large and too complex behind negative correlation learning is to encourage differ-
for a single monolithic system to solve alone. There are ent individual networks in an ensemble to learn different
many examples from both natural and artificial systems parts or aspects of a training data so that the ensemble can
that show that a composite system consisting of severallearn the whole training data better. Negative correlation
subsystems can reduce the total complexity of the systemlearning is different from previous work which trains the
while solving a difficult problem satisfactorily. The success individual networks independently or sequentially
of neural network ensembles in improving a classifier's (Drucker, Cortes, Jackel, LeCun & Vapnik, 1994; Perrone
generalisation is a typical example (Yao & Liu, 1998). & Cooper, 1993). In negative correlation learning, all the
However, designing neural network ensembles is a very individual networks in the ensemble are trained simulta-
difficult task. neously through the correlation penalty terms in their
There are several methods of designing neural network error functions. Negative correlation learning attempts to
ensembles. Most of them follow the two-stage design train and combine individual networks in the same learning
process (Sharkey, 1996): first generating individual process. That is, the goal of each individual training is to
networks, and then combining them. Usually, the individual generate the best result for the whole ensemble. Such an
networks are trained independent of each other. One of theapproach is quite different from other ensemble approaches,
disadvantages of such an approach is the loss of interactionwhich separate the individual design from average proce-
among the individual networks during learning. There is no dures.
feedback from the combination stage to the individual = Negative correlation learning is also different from the
design stage. It is possible that some of the independentlymixtures-of-experts (ME) architecture (Jacobs, 1997) that
designed individual networks do not make much contribu- consists of a gating network and a number of expert
tion to the whole ensemble. networks although ME architecture can also produce biased
individual networks whose estimates are negatively corre-
mg author. Faxé 81-298-545871. Iatgd. Negative correlation Iearnir_1g does not need a separate
E-mail addresses:yliu@etl.gojp (Y. Liu), xyao@cs.bhamacuk 9ating network. It uses a totally different error function. The
(X. Yao) A parameter in negative correlation learning provides a
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convenient way to balance the bias-variance-covarianceThe parameter & A = 1 is used to adjust the strength of
trade-off (Liu & Yao, 1999). ME architecture does not the penalty. The penalty functiqm has the form:
provide such control over the trade-off.

Empirical studies will be carried out in this paper on a PRi( = (Fi(n) — F(”))Z(Fj(n) — F(nm) ©)
time series prediction problem, i.e. the chlorophyll-a predic- 17
tion in Lake Kasumigaura (Recknagel, Fukushima, Hana- o hatial derivative oF;(n) with respect to the output of
zato, _Takamura .& Wllsor_l, 1999), to show why and hoyv networki on thenth training pattern is
negative correlation learning works. Subsequently negative
correlation learning will be tested on the Australian credit 9E;(n) api(n)

=Fi(n) —d(n) + A

card assessment problem. The experimental results showgF;(n) aF;(n)

that negative correlation learning can produce neural

network ensembles with good generalisation ability. =Fi(n) —d(n + )\Z (Fj(n) — F(n)
The rest of this paper is organised as follows: Section 2 i

describes negative correlation learning. Section 3 analyses
negative correlation learning on the chlorophyll-a predic-
tion problem. Section 4 presents the experiment results of —(1— (n) — _

negative correlation learning on the Australian credit card (1= D(Em = d(m) + AF - dm) @
assessment problem and some discussions. Finally, Sectiogvhere we have made use of the assumption fga} has a

5 concludes with a summary of the paper and a few remarks.constant value with respect #(n). The standard back-
propagation (BP) algorithm (Rumelhart, Hinton &
Williams, 1986) has been used for weight adjustments in
the mode of pattern-by-pattern updating. That is, weight
updating of all the individual networks is performed simul-
taneously using Eq. (4) after the presentation of each train-
D = {(x(2),d(1)), ..., (X(N), d(N))} ing pattern. One complete presentation of the entire training
set during the learning process is callecepoch The nega-
tive correlation learning from Eq. (4) is a simple extension

set. The assumption that the outplis a scalar has been , e standard BP algorithm. In fact, the only modification
made merely to simplify exposition of ideas without 10ss of 4t js needed is to calculate an extra term of the form
generality. This section considers estimatthfy forming ACF,(n) — F(n)) for theith network.

an ensemble whose output is a simple averaging of outputs g, Egs. (2)—(4), we may make the following observa-
of a set of neural networks

= Fi(n) — d(n) — A(F;(n) — F(n)

2. Negative correlation learning

Suppose that we have a training set

wherex € RP, dis a scalar, andll is the size of the training

tions:
M . .. . ..
F(n) = i ZFi(n) ) 1. _Durmg thg training process, all the_ individual networks
M= interact with each other through their penalty terms in the

_ o _ error functions. Each networkminimises not only the

the ensembleF;(n) is the output of network on thenth betweenF(n) and d(n). That is, negative correlation
training pattern, andr(n) is the output of the ensemble on learning considers errors what all other networks have
the nth training pattern. learned while training a network.

Negative correlation learning introduces a correlation 2 For) = 0.0, there are no correlation penalty terms in the
penalty term into the error function of each individual  grror functions of the individual networks, and the indi-

network in the ensemble so that all the networks can be  yidual networks are just trained independently. That is,
trained simultaneously and interactively on the same train-  jndependent training for the individual networks is a

ing data seD. The error fUnCtiorEi for networki in nega- Specia| case of negative correlation |earning.
tive correlation learning is defined by 3. For = 1, from Eq. (4) we get
13 1&1 , 1Y IE(N)
E=- ) EBm=5 S(Fi(m —dn)* + = > Api(n) ! = —
= N n; i N n; 5 (Fi N n; P Em —FO d(n) (5)
@)

Note that the empirical risk function of the ensemble for
whereE;(n) is the value of the error function of networlat the nth training pattern is defined by
presentation of thath training pattern. The first term in the 5
right side of Eq. (2) is the empirical risk function of network E..(n) = i1 %F-(n) ~ dmy

i. The second terrp; is a correlation penalty function. The en 2\M & :

purpose of minimisingp; is to negatively correlate each

network’s error with errors for the rest of the ensemble. The partial derivative oEg,dn) with respect td~; on the

©)
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Table 1

The average results of RMS errors produced by negative correlation learn-
ing with A = 1 and independent training (i.2.= 0.0 in negative correla-

tion learning) over 25 runs for the chlorophyll-a prediction in Lake
Kasumigaura from 1984 to 1986. Mean, SD, Min and Max indicate the
mean value, standard deviation, minimum and maximum value, respec-
tively

N Year Mean SD Min Max

1 1984-1985 0.0161 0.0007 0.0150 0.0178
1986 0.0815 0.0076 0.0732 0.1013

0 1984-1985 0.0236 0.0029 0.0215 0.0366
1986 0.1168 0.0043 0.1099 0.1321

nth training pattern is

0Bendn) 1 (1 M L 1 -

aFn) M(M ;FI“‘) dm)) = 1 (W —d(m)
(7)

In this case, we get

E(n) __ 9Eend)

oFm "~ ORn) ®

The minimisation of the empirical risk function of the
ensemble is achieved by minimising the error functions
of the individual networks. From this point of view,
negative correlation learning provides a novel way to
decompose the learning task of the ensemble into a
number of subtasks for different individual networks.

3. Correlations among the individual networks

1401

3.1. Experimental setup

The limnological time series for 3 years between 1984
and 1986 were used in our experiments. There are 360-
day data in each year. For each single day, the eight input
conditions include water temperature, light, rotifer density,
cladocera density, etc. The single output indicates the abun-
dance of chlorophyll-a. The data in 1984 and 1985 were
used as the training data to train the neural network ensem-
ble. Then the neural network ensemble was tested on the
1986 data. Using the 1986 data as the testing data was
suggested by Recknagel et al. (1999) because it represented
typical year for blooms oMicrocystis More details about
the data were given in (Recknagel et al., 1999).

As a pre-processing step, the original data were rescaled
linearly to between 0.1 and 0.9. The input to each individual
network consists of eight input conditions on the current day
and seven output conditions on the past seven days. It
should be pointed out that Recknagel et al. (1999) used a
5-vector input layer which included the current eight input
conditions and those 32 input conditions of the present 10,
20, 30 and 40 days previously. The reason for changing the
input is to reduce the number of input attributes and make
the chlorophyll-a prediction problem more meaningful in
the sense of time series prediction.

The normalised root-mean-square (RMS) erEbwas
used to evaluate the performance of negative correlation
learning, which is determined by the RMS value of the
absolute prediction error faxt = 1, divided by the standard
deviation ofx(t) (Farmer & Sidorowich, 1987),

£ (Dredt, AD — X(t + APy

9
(x— 022 ®

This section analyses negative correlation learning on thewhere Xoredt, At) is the prediction ofx(t + At) from the

chlorophyll-a prediction in Lake Kasumigaura (Recknagel

current statex(t) and (x) represents the expectation xf

et al., 1999) to show how and why negative correlation As indicated by Farmer and Sidorowich (1987), Ef= 0,

learning works.

The chlorophyll-a prediction is a highly nonlinear
problem. Previous attempts using neural networks have
achieved only limited success (Recknagel et al., 1999).
According to Recknagel et al. (1999), the background of
the problem can be described as follows:

Lake Kasumigaura is situated in the south-eastern part of
Japan. It has a large and shallow water body where no
thermal stratification occurs. The annual water temperature
of the lake ranges from 4 to 30 in summer. Due to high
external and internal nutrient loadings, the primary produc-
tivity of the lake is extremely high,..., and favours harmful
blue—green algae such Bcrocystis sppOscillatoria and
Anabaena flos aquaé\s the algal succession changes the
species abundance year by year, it is very difficult to
causally determine and predict algal blooms in Lake Kasu-
migaura.

Accurate prediction of chlorophyll-a and other blue—
green algae will no doubt be very useful in protecting the
fresh-water environment.

the predictions are perfedt = 1 indicates that the perfor-
mance is no better than a constant predictor
Xpred(t, A = (x).”

The ensemble architecture used in the experiments has
four networks. Each individual network is a feedforward
network with one hidden layer. Both the hidden node func-
tion and the output node function are defined by the logistic
function

@ly) = 10

1+ exp(—y)

All the individual networks have ten hidden nodes. The

number of training epochs was set to 2000.

3.2. Experimental results

Table 1 shows the average results of negative correlation
learning and independent training (ie= 0.0 in negative
correlation learning) over 25 runs for the chlorophyll-a
prediction problem. Each run of negative correlation
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Table 2

The correlations among the individual networks trained by negative corre-
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lation learning with differenfA values

number of runs. There are

(2)

0 Con,= 021972  Cof;=0.12713  Cor, = 0.24398
Cony = 017909  Cop, = 024678  Cogy — 011826 , _ ,
0.25 Cox, = 0.16973 Cors = 0.07010 Coy, = 0.17965 correlations among different pairs of networks.
Cory, = 0.11519 Coy, = 0.17438 Cog, = 0.08683 The values of the correlations among the individual
05  Cop,=0.11468 Cors = 0.00593 Coyy = 0.09827 networks had relatively larger positive values whemwas
Cor; = 003867 Cogy = 010509~ Cog, = 006474 0. They reduced to relatively smaller positive values when
0.75 Coi,= 005957  Coys= —0.02466 Coyy = 0.12302 : 410 0.5. All of them b i |
Con.— 002883  Cop,— 033100  Cog, — —0.03763 was increased to 0.5. All of them became negative values
1 Cor, = —0.37871 Cops= —0.37402 Coy, = —0.21235 whenA was further increased to 1. Overall, the results indi-

Cor,; = —0.22528

Cog, = —0.39379

Cog, = —0.41414

cated that the neural networks trained by negative correla-

tion learning tend to be negatively correlated. Because every
individual network learns the same task in the independent
ttraining, the correlations among them are generally positive.
In negative correlation learning, each individual network

learns different parts or aspects of the training data so that
the problem of correlated errors can be removed or alle-
viated. The empirical results match the theoretical analysis

learning was from different initial weights. The value tof
test between negative correlation learning and independen
training with 24 degrees of freedom is- 25.08 which is
significant ata = 0.005 by a two-tailed test, i.e. negative
correlation learning is statistically significantly better than

independent training.
P g (Clemen & Winkler, 1985): when individual networks in an

In order to observe the effect of the correlation penalty bl biased q &
terms, Table 2 shows the correlations among the individual ensemble are unbiased, average proceaures are most effec-

networks trained by negative correlation learning with tive in combining _them when errors in the |nd|V|dua_I
different A values. The correlation between the network networks are negatively correlated and moderately effective

and the networl is given by when the errors are uncorrelated. There is little to be gained
from average procedures when the errors are positively
correlated.

K
Z R0 = FiFEXD) = Fy)

Corj =

4. The Australian credit card assessment problem

[\/]x I Mr—

L K
FRO = FO?Y > FERO) - Fy _ , _ o ,
1 i=1 k=1 This section describes the application of negative corre-
(11 lation learning to the Australian credit card assessment
problem. The problem is to assess applications for credit
cards based on a number of attributes. There are 690
patterns in total. The output has two classes. The 14 attri-
butes include six numeric values and eight discrete ones, the
latter having from 2 to 14 possible values. The Australian
credit card assessment problem is a classification problem
that is different from the regression type of tasks, such as the
chlorophyll-a prediction problem, whose outputs are contin-
uous. The data set was obtained from the UCI machine

the Australian credit card assessment problem. The results were averagen!earnlng benc.hmark' repository. It is a\,/alla,ble by anon-
over 25 runs. “Simple Averaging” and “Winner-Takes-All" indicate two ~ YMOUS ftp at ics.uci.edu (128.195.1.1) in directory /pub/
different combination methods used in negative correlation learning. Mean, machine-learning-databases.

SD, Min and Max indicate the mean value, standard deviation, minimum
and maximum value, respectively

3

=1

=~
Il

whereF (1) is the output of the networkon thelth pattern
in the testing set from thigh run, F;(l) represents the aver-
age output of the networkon thelth pattern in the testing
set,L is the number of patterns in the testing set, Kriglthe

Table 3
Comparison of error rates between negative correlation learnirg1.0)
and independent training (i.2.= 0.0 in negative correlation learning) on

4.1. Experimental setup

Simple averaging Winner-takes-all

The data set was partitioned into two sets: a training set

Training Test Test and a testing set. The first 518 examples were used for the
"~ 10 " 00938 01337 01195 training set, and the remaining 172 examples for the testing
- oo 0001 0.0068 00052 set. The input attributes were rescaled to between 0.0 and
Min 0.0869 01163 01105 1.0 by a linear function. The output attributes of all the
Max 0.0985 0.1454 0.1279 problems were encoded using a 1rofeutput representa-
A=00 Mean 0.0883 0.1386 0.1384 tion for m classes. The output with the highest activation
;‘? 85735;3 g-fg;‘g C?-fg;‘g designated the class.
n . . . . . .
Max 0.0965 0.1454 0.1512 The ensemble architecture used in the experiments has

four networks. Each individual network is a feedforward
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Table 4 with the correlation penalty terms to those of the individual
The sizes of the correct response sets of individual networks created respecneatworks trained without the correlation penalty terms.

ivel n i rrelation learnin 1 nd in ndent trainin . . .
tively by negative correlation leaming €= 1.0) and independent training Two notions were introduced to analyse negative correla-
(i.e. A = 0.0 in negative correlation learning) on the testing set and the sizes

of their intersections for the Australian credit card assessment problem. The tiON learning. They are the correF:t response sets of indivi-
results were obtained from the first run among the 25 runs dual networks and their intersections. The correct response

setS of the individual network on the testing set consists of

A=10 gi : ig 3i2=:114338 gi;lf’i all the patterns _in .the testing set which are classified
Q= 141 0,5 = 116 0y = 133 correctly by the individual network. Let (2, denote the
0y, =123 053 =115 015, =133 size of setS, and{}, ;, ; denote the size of s§ N §, N
(=121 (234 =113 Dpas= 113 --N §,. Table 4 shows the sizes of the correct response sets

A=00 2, =149 2 =147 {23=148 of individual networks and their intersections on the testing
%114:: 114;37 gz - ﬂ; giz ﬂg set, where the individual networks were, respectively,
Q= 146 Oy = 147 Qpps = 146 created by negative correlation learning and independent
43, =146 O3, = 146 Qypaa= 146 training. It is evident from Table 4 that the different indivi-

dual networks created by negative correlation learning were
able to specialise to different parts of the testing set. For
network with one hidden layer. Both the hidden node func- instance, in Table 4 the sizes of both correct responsé&sets
tion and the output node function are defined by the logistic andS, atA = 1.0 were 143, but the size of their intersection
function in Eq. (10). All the individual networks have ten S, N S, was 133. The size o, NS, N § N $ was only
hidden nodes. The number of training epochs was set to 250.113. In contrast, the individual networks in the ensemble
The strength parametar was set to 1.0. These parameters created by independent training were quite similar. The
were chosen after limited preliminary experiments. They sizes of correct response s&s S,, S5, andS, at A = 0.0

are not meant to be optimal. were from 146 to 149, while the size of their intersection
_ SNSNSNS reached 146. There were only three
4.2. Experimental results different patterns correctly classified by the four individual

networks in the ensemble.

In simple averaging, all the individual networks have the
same combination weights and are treated equally.
However, not all the networks are equally important.
Because different individual networks created by negative
correlation learning were able to specialise to different parts
of the testing set, only the outputs of these specialists should
be considered to make the final decision of the ensemble for
this part of the testing set. In this experiment, a winner-
takes-all method was applied to select such networks. For
each pattern of the testing set, the output of the ensemble
was only decided by the network whose output had the

Table 3 shows the average results of negative correlation
learning over 25 runs. Each run of negative correlation
learning was from different initial weights. The ensemble
with the same initial weight setup was also trained using BP
without the correlation penalty terms (i.e= 0.0 in nega-
tive correlation learning). Results are also shown in Table 3.
For this problem, the simple averaging defined in Eq. (1)
was first applied to decide the output of the ensemble
system. For the simple averaging, it was surprising that
the results of negative correlation learning with= 1.0
were similar to those of independent training. This phenom-
correiation penally term & to encourage diferen ndvidual MINESt activation. Table 3 shows the average resuls of
networks in an ensemble to learn different parts or aspects ofth.e negative correlatpn Igarnmg over 25 funs using the

o : . ) ; winner-takes-all combination method. The winner-takes-
the training data. In order to verify and quantify this claim,

R : all combination method improved the negative correlation
we compared the outputs of the individual networks trained learning significantly because there were good and poor

Table 5 networks for each pattern in the testing set and winner-
Comparison among negative correlation learning (NCL), EPNet (Yao & takes-all selected the best one. However it did not improved
Liu, 1997), an evolutionary ensemble learning algorithm (Evo-En-RLS) the independent training much because the individual

(Yao & Liu, 1998), and others (Michie, Spiegelhalter & Taylor, 1994) in  natworks created by the independent training were all simi-
terms of the average testing error rate for the Australian credit card assess-l ar to each other

ment problem. TER stands for Testing Error Rate in the table . .
Table 5 compares the results of negative correlation

Algorithm TER Algorithm TER learning with those produced by other neural and nonneural
NCL 0.120 DIPOL92 o141 zlgqnthms, whelre EPNekt is an evol.ut|onary sys(tjem for
EPNet 0115 Discrim 0141 esigning neura ngtwor s (Yao & L|u_, _1997) and E_vq—
Evo-En-RLS 0.095 Logdisc 0.141 En-RLS forms the final results by combining all the indivi-
Cals 0.131 Cart 0.145 duals in the last generation in EPNet based on the recursive
Itrule 0.137 RBF 0.145 least-square algorithm (Yao & Liu, 1998). The other algo-
Castle 0.148 NaiveBay 0.151

rithms represent the best 11 out of the 23 algorithms tested

IndCART 0152 BP 0154 by Michie et al. (1994). Although negative correlation
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learning performed slightly worse than EPNet and Evo-En- constructive comments that have helped to improve the
RLS, it was significantly faster in terms of training time. paper.

Negative correlation learning performed better than all other

algorithms.
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