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Abstract

We describe a new classifier for protein secondary structure prediction that is formed by cascading together different
types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7%
(assessed by a rigorous full Jack-knife proceglore a new nonredundant dataset of 496 nonhomologous sequences
(obtained from G.J. Barton and J.A. CuffThis database was especially designed to train and test protein secondary
structure prediction methods, and it uses a more stringent definition of homologous sequence than in previous studies.
We show that it is possible to design classifiers that can highly discriminate the three ¢HsEe€) with an accuracy

of up to 78% forp-strands, using only a local window and resampling techniques. This indicates that the importance
of long-range interactions for the prediction @fstrands has been probably previously overestimated.

Keywords: neural network; prediction; protein; secondary structure; statistics

Although the protein folding process may require catalysts such aSejnowski, 1988; Holley & Karplus, 1989; Kneller et al., 1990;
chaperoningHubbard & Sander, 1991it is widely accepted that Rost & Sander, 1993; Riis & Krogh, 1996; Kawabata & Doi, 1997,
the three-dimensiondBD) structure of a protein is related to its Baldi et al., 1999; Jones, 19P8r on k-nearest-neighbor methods
sequence of amino acid&pstein et al., 1963; Anfinsen, 1973; (Biou et al., 1988; Zhang & Chou, 1992; Yi & Lander, 1993;
Ewbank & Creighton, 1992; Baldwin & Rose, 199%his implies  Geourjon & Deleage, 1994; Salamov & Solovyev, 1995, 1997;
that it is possible to predict protein structure from sequence withFrishman & Argos, 1996, 1997; Levin, 199A fair comparative
high accuracy. The most general and reliable way of obtainingassessment of these different methods turns out to be difficult, as
structural information from protein sequence data is to predicthey use different datasets for the learning process and different
secondary structure. The aim of secondary structure prediction isecondary structure assignmef@siff & Barton, 1999. However,
to extract the maximum information from the primary sequence ina number of authors have designed methods with accuracies above
the absence of a known 3D structure or a homologous sequence tife threshold of 70% accuracy taking advantage from multiple
known structure. With the increasing number of amino acid sesequence alignmen(Rost & Sander, 1993; Salamov & Solovyev,
guences generated by large-scale sequencing projects, and the cd895, 1997; King & Sternberg, 1996; Levin, 199@r selected
tinuing shortfall in crystallized homologous structure, the need forpairwise alignment fragmenig-rishman & Argos, 19917 These
reliable structural prediction methods becomes ever greater. accuracies have been confirmed in the series of CASP blind trials
Many approaches have been proposed to tackle this problenthttp:;//PredictionCenter.linl.goy.
and they can be approximately grouped into those using simple In this paper, we present the results of an in-depth analysis of the
linear statistics either on residues or physicochemical properties grerformance of a new classifier for protein secondary structure
even both(Robson & Pain, 1971; Chou & Fasman, 1974; Lim, prediction Prof(Protein forecasting Prof is formed by cascading
1974; Robson & Suzuki, 1976; Garnier et al., 1978; Cohen et al.(in multiple stagegdifferent types of classifiers using neural net-
1983; Ptitsyn & Finkelstein, 1983; Gibrat et al., 1987; King & works and linear discrimination. To generate the different classi-
Sternberg, 1996; Avbelj & Fele, 199&hose using symbolic ma- fiers, we have used both GOR formalism-based methods extended
chine learningKing & Sternberg, 1990; Muggleton et al., 1992 by linear and quadratic discriminatiofGarnier et al., 1978, 1996;
and those using sophisticated nonlinear statistical methods for presibrat et al., 198, and neural network-based methdd@an &
diction, which are often based either on neural networks exploitingSejnowski, 1988; Rost & Sander, 1993 he theoretical founda-
patterns of residues apaor physicochemical propertigQian & tion for Prof comes from basic probability theory, which states that
all of the evidence relevant to a prediction should be used in

Reprint requests to: Mohammed Ouali, Department of Computer Sci-makmg that predictiofilaynes, 1994This means that it should be

ence, University of Wales, Aberystwyth Penglais, Aberystwyth, CeredigionP0SSible to improve predictions by combining different algorithms
SY23 3DB, Wales, United Kingdom; e-mail: mho@aber.ac.uk. or the same one trained in different ways or on different sets, as
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long as the classifiers produce noncorrelated ertoes, if the GORIV, on our database, has an estimated accuracy per residue of

produced errors do not all correlate with each other 61.3%, while the authors give an estimate of 64.4%. We confirm
Prof represents a compromise between classifiers having diffetthe estimate of Cuff and Bartai1999, who show a reduction of

ent properties and achieves a global accuracy per residue of 76.7%e accuracy by 4% using a similar procedure to three states re-

on our nonhomologous data set, using a full jack-knife testingduction from DSSRKabsch & Sander, 1983This result under-

procedure(leave-one-out cross-validatipn lines the difficulties of comparing different methods from different
We analyze the performance of each classifier and comparpapers, and the importance of the reduction protocol. The mea-
them with and without the use of evolutionary informatienul- surements of the accuracy per proteins instead of per residue con-

tiple alignments We show that it is possible to obtain classifiers firm these observatior{glata not showp although the Sotsegment
with global accuracies at better than 75% and capable of predictingverlap measujeg Table 1 for GORIV is globally the same as for
B-strands with an accuracy per residue of better than 77-@8& GORI. The Sov measures for the GOR lIl are particularly poor,
a-helix predicted at better than 79% and coils at better than)71% and in all cases the global Sov does not exceed 60%, implying a
While it has long been argued that the lower accuracyfetrands  lack of correlation in the prediction of adjacent residues at this
was mainly due to the fact that all secondary structure methods dstage. The addition of pair informatidimformation a residue car-
not take into account long-range interactions, and some attemptées about another residue’s secondary structure that does depend
have been published using a double windowgestrands predic-  on the other residue’s typand the so-called pair—pair information
tions to overcome this difficultyKrogh & Riis, 1996; Frishman & does not increase the global Q3. The principal effect of using the
Argos, 1997. Our results indicate that the importance of long- probabilities to make a decision, rather than simply taking the state
range interactions for the prediction gfstrands has been proba- having the highest information value, is that the prediction then
bly overestimated up to now. reflects the proportion of the three staték E, C) in the database.
When the decision is taken on the information ba8istrands are
better predicted and a decrease of @e&s observed. The reason
that the use of probabilities can lead to a different answer from the
information is explained by Figure 1. This shows that with the
same algorithm it is possible to design two very different classi-
fiers. This is a key observation in the formation of multiple clas-
sifier combinations for improving secondary structure prediction.
Table 1 shows the evaluation of five different GOR meth(@@ar- The accuracy of GOR methodologies can also be improved by
nier et al., 1978, 1996; Gibrat et al., 198¥d their combinations using simple linear discrimination. The vector used consists of the
using linear and quadratic discriminations. To the best of our knowlthree information values of each classifier using only information
edge, this is the first time that an exhaustive comparison on theand the two probabilitiegprobabilities fora-helix andB-strand
same database of all the GOR algorithms has been publisheébr the classifiers using probabilitié¥able 1. A gain of more than
Surprisingly, a GOR | algorithm that uses probabilities to perform2% for theQs is observed over GORI using probabilities. That this
the classification task exhibits a higher estimated Q3 per residueombination produces a better classifier is also clearly shown by
than both GORIIl and GORIV. This result is confirmed by the the examination of the Matthews’ correlation coefficients. A qua-
analysis of the Matthews’ correlation coefficients. We found thatdratic discrimination was performed on the results of the linear

Results and discussion
Assessment of secondary structure classifiers without

using evolutionary informatiofGOR methods
vs. single neural networks

Table 1. Statistical analysis of the different GOR methods and neural network method without the use of multiple afignment

Qs Qu Qe Qc Sov Sowy Sowx Sow
Method % 0 (% (W Cy Ce Cc (% (p)) (% (p)) (% (p) (% (p))

GOR | (Information 60.7 647 578 589 0420 0371 0408 564121 57.1+ 258 66.9+ 22.0 53.1+ 14.9
GOR | (Probability 623 650 370 724 0422 0360 0406 56725 59.0+ 26.1 52.1+ 26.7 59.5+ 14.7
GOR Ill (Information  59.0 68.8 56.6 525 0416 0.347 0.383 432114 49.6+244 59.5+ 23.4 40.9+ 13.6
GOR Il (Probability) 611 70.2 423 63.0 0420 0.348 0.395 45:11.3 51.7+24.3 50.8+ 25.8 47.20+ 14.7

GOR IV 61.3 69.3 439 634 0463 0315 0.387 56922 622+ 253 56.8+ 25.3 53.5+ 15.5
GOR (linear reg) 643 647 418 75.0 0467 0388 0432 5%01.6 57.4+ 257 56.1+ 25.6 61.6+ 14.3
GOR (quadratic reg. 62.3 71.3 548 588 0464 0403 0.391 5%583.2 59.9+ 257 62.5+ 25.2 54.3+ 15.3
Neural network(u) 653 659 446 75.0 0494 0399 0446 55624 56.9+ 25.6  55.5+ 26.2 60.6+ 14.8
Neural network(b) 64.0 654 628 634 0491 0412 0445 568128 57.3+25.7 66.5+ 22.9 56.7+ 15.3

aQ; is the accuracy per residisee Materials and method®y, Qg, andQc are the accuracies far-helix, B-strand, and coil, respectivelg, Cg,
andCc are the Matthews’ correlation coefficients fethelix, 8-strand, and coil, respectively. The Sov is the averaged segment overlaps measure per protein
for the three states. Sgy Sow, and Soy are the averaged segment overlap per proteinvfbelix, B-strand, and coil, respectively; the corresponding
standard deviations are shown. This table summarizes the statistics for the different GOR methods and the neural-network methods without the use of
multiple alignment. GOR [information is the GOR | algorithm using only the three computed information values for the decision process. GOR |
(probability) is the GOR | algorithm with an explicit computation of the probability of each cl{#ss decision is taken on the basis of the highest
probability). Same for GOR ll(information and GOR llI(probability). GOR(linear reg) represents a combination of the five GOR algorithms using linear
discrimination. GORquadratic reg.is a quadratic discrimination over the GQkhear reg) algorithm using a window of seven residues. Neural network
(u) is the network trained in an unbalanced. Neural netwbjkstates for the network trained in a balanced way.
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Fig. 1. Computed curves displaying the probability vs. the information values using Equation 9. The curve on the left side shows the
relationship between the information values for the coil and the corresponding probability, the middle argeforand right one

for B-strands. Each curve depends on the prior probability of the considered class. For a same of informatiam thedwegea of the

slopeg: the probability for coil will be higher than the probability farhelix andg-strand, the probability of-helix will be higher

than the probability of3-strand. Due to the observed shifts, using the probability instead of the information will favor the prediction

of first the C state over the E state, second of the H state over the E states, third of the C state over the H state. Therefore, this will
lead mainly to an underprediction of the E state.

discrimination using a window of seven residy#®e components neural network method is more accurate than any of the GOR
of the vector are the probabilities farhelix andg-strand. The  algorithms when analyzed at the residue level, while at the seg-
result is an improvement over the prediction of H and E states wittment level the performance was rather sim{l&ble 1. However,
respect to the five methods. It was not possible to improve thehe Sov should not be used to assess the performance of a classifier,
global accuracy using quadratic discrimination. We used linear antbut rather to assess the quality and the usefulness of a prediction as
guadratic discriminations to produce “new” classifiers. As it wasthe Sov can be improved by applying a second “structure-to-
possible to obtain an improvement over the GOR methods, wetructure” network(Rost & Sander, 1993or simple smoothing
conclude that the errors produced by the different classifiers aréilters (King & Sternberg, 1996; Zimmerman & Gibrat, 1998y
not all correlated. using such a strategy, one can take into accifrieast in pajtthe

Table 1 also shows the evaluation of a single three-layered netcorrelation between adjacent residues.
ral network trained in both a balanced and unbalanced way. The
use of the unbalance_d n_etw_ork IS formally eqw_v_a_lent o the use OfAssessment of GOR methods using evolutionary information
the observed class distribution as prior probabilities for each Clas?multiple sequence alignmeytlst stage of our classifier
(H, E, © in the learning process: while the balanced network is
equivalent to the use of uniform prior probabilities—in each epochThe alignment of homologous sequences provides additional in-
a random resampling is performed to achieve the redistribution oformation for predicting secondary structure. When dealing with
(1, 1, ) for each class. The networks we used containetk 23 statistical methods, the simplest way of using this extra informa-
input cells (20 residuest+ gaps, the hidden layer contained 30 tion is to average the GOR information or probabilities over the
cells, and the output had 3 cells. The neural network trained in amligned residues. This is equivalent to extending the GOR predic-
unbalanced way has an accuracy per residue of better than 65%0on algorithms to include homologous informatiGgvelebil et al.,
while the balanced one showed a decrease in the global accurad®87). All the proteins used in our multiple alignment were unique
of ~1%. All the methods that explicitly take into account the prior and had a minimum of 25% sequence identity with respect to the
probability of occurrence for each class fail to accurately predicttarget sequence, insertions in the multiple alignments are ignored,
B-strands. The Matthews’ correlation coefficients show that theand each sequence is predicted without any insertions, then the
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average took place. Table 2 shows the analysis of this experimenin both a balanced and an unbalanced way. Interestingly, when the
By using multiple alignments, it was possible to improve the ac-seven GOR methods agree each other, the global accuracy is 78%
curacy of the different GOR algorithms by 4-5% over that of aon the subset of residues with consensus, while the accuracy is
single sequence. The best algorithm was still found to be the comenly 55% on the subset of residues without consensus between the
bination of all the GOR algorithms using linear discrimination: this classifiers. Using such a procedure, it is possible to boost the GOR
method achieves @; per residue of 68.7% and@; per protein of  method to 71.4%using the per-residue accuradpr the unbal-

69% over the whole databagdata not shown a-Helices and anced trained network and to 70% for the balanced one, which
B-strands are better discriminated as shown by the systematic intepresents an improvement of 2% over linear discrimination and
provement of the Matthews’ correlation coefficients. This indicatesmore than 5% over any individual GOR algorithm; the Sov is also
that the use of multiple alignment diminishes the number of falsémproved (Table 3. The increase of the global accuracy is ex-
positives and false negatives. The Sov is improved by 4—7% deplained by the fact that the subset of residues without consensus is
pending on the method used. The combined method using quasredicted correctly at 61% after the neural network step, which
dratic discrimination over a window of seven adjacent residuesepresents an improvement of 7% on this subset. Characteristi-
exhibits the highest value for Sdmore than 64%as expected, cally, the consensus subset always exhibits a global accuracy of
since this kind of discrimination allows the correlation between78%. This combination of GOR algorithms generates a classifier

adjacent residues to be taken into account. where B-strands andy-helices are better discriminated as shown
This improvement using multiple aligned sequences agrees withy the Matthews’ correlation coefficients.
the work of Zvelebil et al(1987, who also found a mean im- Another simple and direct way of using multiple aligned se-

provement of 4% in accuracy on a set of 11 protein families. Levinquences when dealing with neural networks is to compute the
et al.(1993 have obtained a mean improvement of 8% over severcorresponding profile. We compute the profile first by explicitly
protein families, using alignments obtained by spatial superposieounting the gapsprofile 1) and second by ignoring the gaps
tion of main-chain atoms in known tertiary protein structures, and(profile 2). The architecture of these networks is the same as the
they obtained using an automated procedure of multiple alignmemne used for single sequences. This produces different classifiers
an improvement of around 6.8%. It is difficult to draw firm sta- whose characteristics are shown in Table 3. Their accuracies per
tistical conclusions from this previous worfkbout the expected residue are at-71%, which represents an improvement of 5% over
increase in accuracy obtained by using multiple alignmeiist  the neural networks using only single sequences, as in the case of
we recognize that our procedure is clearly far from optimal. GOR.

However, we will show that it is still possible to extract more  Recently, at the CASP3 meetirithird meeting on the critical
information by exploiting the generation of multiple classifiers. assessment of techniques for protein structure predjctitip://
PredictionCenter.linl.ggtcasp3 Casp3.html, D. Jones used the pro-
file generated by PSI-BLAST to design a set of networks that
performed particularly wel{Jones, 1999 This procedure has the
following basic advantages: more distant sequences are found; the
We compared the combined GOR methods using linear discrimiprobability of each residue at a specific position is computed using
nation and quadratic discrimination with neural networks. We com-a more rigorous statistical approach; and each sequence is properly
bined the 7 GOR methods using small neural networks having 2iveighted with respect to the amount of information it carfiéi-
inputs over a window of 7 residues, a single hidden layer of 14schul et al., 199% This way of using multiple alignments is a step
cells, and as usual 3 output cells. We learned the output of théorward. We therefore also made use of PSI-BLAST profiles in an
different GOR methods, namely information and probabilities, with-analogous manner to the work of D. Jones. The NR database was
out any normalization procedure. The chosen strategy was to leaffiltered to remove segment with low complexitjones, 1990 For
only the residuegoutput of GOR that exhibit no consensus in the direct comparison, we used the same architecture for the neural
prediction over the seven GOR methods, since the produced erroretwork as D. Jones, namely X720 input cells and 75 cells for
are uncorrelated. The residues for which a consensus existed bite hidden layer used with three outputs céliswever, this ar-
tween all the seven methods were simply passed through anothehitecture only produced a small difference on global accuracy
similar network to produce an homogenate output. This was don&om our standard architectyreThis network was trained in a

Generation of multiple neural network using evolutionary
information, second stage of the classifier

Table 2. Statistical analysis of the different GOR algorithms using multiple alignfhent

Qs Qn Qe Qc Sov Sowy Sow Sove
Method % (%) (%) (%) Cy Ce Cc (% (p)) (% (p)) (% (p)) (% (p))

GOR | (Information 65.3 69.2 61.3 643 0499 0440 0461 6%03.6 61.3=26.6 71.6*= 228 57.4+ 15.9
GOR | (Probability 66.3 688 362 79.0 0499 0415 0462 59832 63.1+27.2 52.0+ 279 63.0+ 14.1
GOR Ill (Information 644 757 620 56.7 0505 0437 0445 58333 57.7+248 66.5+ 233 45.4+ 15.2
GOR Il (Probability) 658 76.0 427 69.0 0497 0421 0459 52332 60.4+252 53.4+ 26.0 53.2+ 15.8
GOR IV 654 747 423 693 0528 0376 0.438 6&83.0 68.1+25.7 57.1+25.9 57.2+ 16.1
GOR (linear reg) 68.7 682 472 795 0552 0463 0487 62733 63.1+£26.9 61.1+255 65.5+ 14.4
GOR (quadratic reg. 680 738 615 66.6 0566 0481 0465 648934 66.7+26.3 68.3+24.3 61.7= 14.9

aSame nomenclature as Table 1 after the use of multiple alignment.
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Table 3. Statistical analysis of all the classifiers forming the second stage of@Prof

Qs Qn Qe Qc Sov Sow Sowk Sove

Method (%) (%) (%) (%) Ch Ce Cc (% (p)) (% () (% (p)) (% (p))

NN-GOR (u) 714 717 568 782 0.610 0516 0.515 66:44.4 66.8+ 27.4 672+ 248 67.6* 154
NN-GOR (b) 69.8 747 690 663 0599 0516 0.499 64137 65.8+259 721+221 615+ 152
NN profile 1 (u) 70.6 702 550 785 0585 0500 0.515 64134 645+ 259  66.0+ 24.7 66.6+ 14.8
NN profile 1 (b) 69.1 721 676 676 0585 0496 0.497 6@94.7 63.3+259 70.7+22.1  59.0+ 16.5
NN profile 2 (u) 70.2 715 550 775 0590 0503 0.515 62713.9 63.7+£26.9 643+ 252 650+ 15.1
NN profile 2 (b) 69.3 723 686 673 0587 0502 0.502 626139 63.4+26.0 724+21.9  60.9+ 16.0

NN profile-blast(u) 73.6 75.8 60.9 78.0 0.650 0.564 0.530 62.914.5 65.5+ 26.7 67.6x= 24.9 64.4+ 16.1
NN profile-blast(b) 72.5 76.6 74.6 68.4 0.651 0.571 0.524 62.414.5 65.8+ 25.9 74.8+ 21.6 59.6+ 16.2

aSame nomenclature as Table 1 for the statistics. All the classifiers make use of multiple aligned sequences. (MNs@&@R for the combination of
the seven GOR methods after the use of multiple alignment by a neural network trained in an unbalanced way. MNS&BHR for the same combination
with a neural network trained in a balanced way. NN profile 1 states for the neural networks taking as input the profile computed with gaps, which means
that the profile is computed by treating gaps as a simple residue. NN profile 2 states for the networks taking as input a profile wittRostg&iBander,
1993. NN profile psi-blast states for the networks taking as input the profile derived from PSI-BLi5and (b) states always for the way of training:
unbalanced and balanced, respectively.

balanced and unbalanced way to generate classifiers with differemtatabase that was constructed using a strict homology dstoff
properties. We obtained two classifiers whose accuracies per redarity score (SD) less than 5; see Materials and methodde
idues are 73.6 and 72.5%, respectively, which represents an intherefore speculate that the PSI-PRED method of Joh@39
provement of 2% over NN-GOR and 2 to 3% over the neuralobtains its high accuracy by exploiting the extra information avail-
network using a standard profi(profile 1 or 2 (Table 3. Itisalso  able in homologous tertiary structures. Indeed, the fact that two
an improvement of more than 7 to 8% over the neural networkhomologous proteins share the same fold does not imply that the
using only single sequences. The Matthews’ correlation coeffisecondary structure of the two homologues are strictly similar; on
cients also show that the PSI-BLAST profile carries more infor-the contrary, differences are expect to be observed. As stated in the
mation, as the three coefficients are improved by 1.5 to 5%introduction, it is a basic rule in statistics that all relevant infor-
a-Helices andg-strands are also better discriminated. The Sovmation should be used in predictions. PSI-PRED is the first pre-
measurements indicate that at this stage the “Psi-Blast” networkdiction method to exploit multiple homologous tertiary structures.
do not perform better than the other profile-networks and thatPrevious method$and our approaghhave avoided using such
NN-GOR networks are even better from this point of view: this is data because of the danger of biasing toward folds with many
to be excepted since a better Sov requires a second step of filterirggructures. We therefore believe that PSI-PRED obtains high ac-
or regularization. Our work confirms the results of D. Jones andcuracy by use of this new source of informati8 times more
shows that such classifiers have different properties, but the gagtructures while Prof obtains high accuracy by more efficient use
between “standard profiles” and “psi-blast profiles” is not as wideof data. If this is true, it may be possible to combine such ap-
as expected from th@; point of view as previously suggested at proaches to produce a method with higher accuracy than either
the CASP3 meeting. However, more information does seem to b@SI-PRED or Prof.
extracted from the PSI-BLAST profile by the networks. This is
explalngd partly by the fact that the Iearnlng_proc_ess occurs Ove{:ombining all the generated neural network from stage 2
the profiles and that somehow we are learning directly from the - . . o
- ; : to achieve higher accuragthird stage of the classifier

multiple alignment, which was not the case, for example, when we
used a simple average over the multiple alignment with the GORThe third stage of our classifier consists of combining the eight
algorithms. different classifiers generated from stageFly. 2). To do this, we

The method of Jones using the PSI-BLAST profile has an av-use both simple linear discrimination and a neural network trained
erage estimated accuracy per residue of 76.5%, based on a benc¢h-a balanced and an unbalanced way. The linear discrimination
mark of 187 unique protein folds with full cross validation. By uses a vector whose dimension is (B4ree output values by clas-
chain, the mearQ; score is 76.0% with a standard deviation of sifiers), and no correlations between adjacent residues are intro-
7.8%(http://globin.bio.warwick.ac.ukpsipred psipred_info.html duced. The architecture of the network used at this stage consists
To achieve this result, the author used a large database of 1,8&#% 24 X 13 input cells(we use a window of 13 residues to predict
proteins where the threshold for sequence identity is 95%. Thosthe central residyethe hidden layer is made of 40 cells and it has
proteins form the “N-level” in the CATH databag®rengo et al., three outputs. By using such a strategy, we are again able to pro-
1997). For cross validation, he used fold similarity and sequenceduce a set of highly accurate and different classifiers all better than
identity to exclude chains from that list—chains that share a com¥5% (accuracy per residljieWe obtained an improvement of 2.6%
mon domain fold(i.e., have a domain with identical CATH num- at this stage with respect to stage 2 achieving even a per-residue
berg or that have a sequence identity superior to 25% to the tesaccuracy of 76.2% for the best classifier at this level. The prop-
protein chains are excluded from the training &kines, 1999 erties of each classifier are analyzed in Table 4. The Matthews’
The use of only the PSI-BLAST profile does not alone produce asorrelation coefficients show an improvement of 4 to 5% uni-
high an accuracy as 76.5%, as we have demonstrated on our oviarmly over the three states. The Sov measurements show an im-
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Fig. 2. Architecture of the cascaded multiple classifier Prof. G stands for GQRyr information;(p) for probability; NN for neural

network; Id for linear discrimination; qd for quadratic discriminatidu) for neural networks trained in an unbalanced wy;for

neural networks trained in a balanced way. Stage 1 is constituted by GOR algorithms. Stage 2 contains the combination of GOR
algorithms using neural network§IN-G) and also neural networks using different profilgsofile 1 and 2, PSI-BLAST profiles
(psi-blas}. Stage 3 uses outputs from stage 2 combined by linear discrimin@icombine 3 and neural networkéNN combine 3.

Stage 4 uses outputs from stage 3 and the set of attritegegext to produce new classifiers using neural networks. These networks

are then averaged.

stage 3

provement of~6%, which is to be expected, since this step can beGarnier et al., 1996 We have shown that it is possible to predict
also seen as a generalization of the second level of prediction iwith high accuracyB-strands using a single window and resam-
PHD (the level structure to structurdRost & Sander, 1993  pling techniques, confirming the earlier results of Rost and Sander
Furthermore, the network trained in a balanced way achieves @1993. Our results suggest that perhaps the lower accuracy for
global accuracy of only 75.1% but the accuraciesddrnelix and  B-strands is due mostly to the way the data are represented and
B-strands are 79.6 and 77%, respectively; the ability of discrimi-their frequency distribution.
nating between the three states is high as indicated by the Matthews’
coefficients. . . e )

This result undermines the argument tj@astrands are poorly Adding attributes tq 'the classifieffourth and fifth

. . e stages of the classifier

predicted mainly because the stabilization of such a structure re-
quires long-range interactior(¢o form B-sheets that cannot be  King and Sternber@l996 showed that it was possible to boost the
captured using a single local windoi#rishman & Argos, 1996; GOR | algorithm using further attributes combined by linear dis-
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Table 4. Statistical analysis of stages 3, 4, and 5 of Prof

Qs Qn Qe Qc Sov Sowy Sow Sow
Method %) (% (% (% Ch Ce Cc (% (p) (% (p) (% (p) (% (p)

Combine stage 8linean 757 757 619 823 0686 0599 0568 696140 69.5+27.7 71.0+242 70.7+147
Combine stage 3 NNu)  76.2 77.7 649 805 0.699 0608 0571 72435 728+ 276 729+ 24.9 71.3+ 14.6
Combine stage 3NNb) 751 79.6 77.0 706 0.699 0.604 0558 7+723.6 732+ 26.9 77.7% 22.0 67.7+ 15.3
Combine stage 4 NNu)  76.8 781 66.7 80.7 0.709 0.626 0576 73536 71.0+29.9 728+27.2 722+ 144
Combine stage 4 NNb) 75,7 79.7 781 715 0.710 0.619 0561 72440 71.0+29.8 77.4+24.4  68.0+ 15.0

Average stage 5 767 788 716 776 0710 0629 0574 737239 711+ 29.9 75.6+ 26.0 71.1+15.0

aSame nomenclature as Table 1 for the statistics. Combine stélijgedr is the classifier obtained by combining the eight neural networks from
stage 2Asee Fig. 2using linear discrimination. Combine stage 3 Kljland(b) state for the neural networks using as input the output of the eight networks
of stage 2 trained, respectively, in an unbalanced and balanced way. Combine stagei/aktl(b) are the networks combining the three methods of
stage J(linear discrimination and 2 networkgaking as input on one hand the output of stage 3 and, on the other hand, the computed aftnituntest
of hydrophobicity assuming am-helix and ag-strand, fraction of residues H, E, Q, D, R in the sequence, fraction of prediehedix andg-strand.
Average stage 5 represents the final classifier obtained by averaging the two classifiers of stage 4.

crimination; they also obtained better balanced predictions by usingbout the influence of alternative eight to three states
these attributes. In this work, we add to the three outputs of the thredecompositions (from DSSP) on Prof
classifiers of the previous stage the following selected attrifutes
selected only the attributes that gave improvemeriie® moment  DSSP provides an eight states assignment of secondary structure
of hydrophobicity(Eisenberg, 1984is computed for each residue (Kabsch & Sander, 1983However, all the available prediction
over a central window of seven under the assumption that these resiethods are normally trained to predict three stat¢sg, C). It
idues are ine-helix; the moment of hydrophobicity assuming a has been argued recently that the way of decomposing these eight
B-strand conformation; we add also the fraction of the following res-states could have a dramatic effect on the accuracy of a method
idues H, E, Q, D, R, as well as the fractionshelix andg-strand  (Cuff & Barton, 1999. We then have tested Prof using different
(computed from the averaged three classifiers of the third stAlge =~ decomposition methods. The results are presented in detail in Table 5.
architecture of the used networks areX 38 input cells(window Our goal is not to argue about the best way of decomposing the
of 13 and 18 valuesthe hidden layer contains 30 cells, and we haveeight states of DSSP into three states, as we think that all these
3 output cells. The network has been trained both in a balanced andethods are defensible from a structural point of view. Instead, our
unbalanced way. Results are presented in Table 4. An improvemegbal is to give a complete view of the performance of Prof using
of 0.7% is observed on the global accuracies. The accuracy for théifferent definitions.
unbalanced trained network is close to 77% while the balanced one In this paper, as stated in Materials and methods, we have used
is very close to 76% and exhibits even higher accuracgfsirand  the following conservative mapping to train the method: H, I, and
anda-helix. The prediction of th@-strand andv-helix population G states from DSSP are translatedaakelix (H), E is translated
is improved by 1 to 2% over the accuracies as well as the Matasg-strandg E), and the remainder is translated as ¢Gil. Using
thews’ coefficients. We therefore conclude that these attributes aithis mapping achieves an accuracy of 76.7%.
in the discrimination of the three classes. The Sov measurements areHowever, some authors used the following decomposition: E and
also improved Table 4. Finally, we average the two classifiers of B as(E), G and H agH), and the rest a<C) (Cuff & Barton, 1999.
the fourth stage, which constitutes the final classifier that we callThis decompositiofiMethod A) treats isolate@-bridges as part of
Prof. We then obtain a classifier that has an estimated global aaB-sheet E). This increases the proportion of stéf®. One has to
curacy of around 77%; it predicts tlhehelix at 79%, the3-strand  keep in mind at this stage that Prof has not been trained with this
at 71.6%, and coils at 77.6%. This represents a compromise belecomposition so a decrease of the accuracy is obviously to be ex-
tween the balanced and the unbalanced way of training a neural ngtected. Nonetheless, with this method Prof still achieves an accu-
work. This is the first time, to the best of our knowledge, that aracy per residue of 76%. This is a decrease of 0.7% with respect to
classifier predict@-strand with such high accuracthe statistical ~ our previous estimation. Th&strand are still predicted with an ac-
analysis of the classifier is shown in Tablg 4 curacy per residue of 68.4% instead of 71.6%; this is a decrease of
Proteins can be classified into four structural clag@#sang &  3.2% while the increase of the total population of the st&jes of
Chou, 1992; Rost, 1996We analyzed Prof using this classifica- 6.1%. This level of accuracy in thH&) states is still the highest ac-
tion. The final classifier has an accuracy per protein of 79.6% anduracy ever reported to the best of our knowledge.
a Sov of 76.3% on the all-family (helix = 45%, strand< 5%), Rost and Sande(1993 have used another decomposition
on the allg family (strand= 45%, helix< 5%); the algorithm has  (Method B. In this method, H, G, and | are translated k), E is
an accuracy of 76% with a Sov of 77.8%. For thg3 family translated intdE), B is translated ifEE), and BB is translated in
(helix = 30%, strand= 20%), the accuracy per protein is also 76% (CCC). The remainder is translated int€). This represents an
and the Sov is 76.5%. All the other proteins have an averagethcrease in théE) population of 6.8%. Prof achieves an accuracy
accuracy per protein of 75.5% with an Sov of 72.3%. A tool for of 76% per protein and 75.8% per residue. This is a decrease of
assisting in tertiary structure prediction should allow the user t00.9% over our estimated accuracy of Prof. But Prof still exhibits a
choose between the three final classifiers. The distribution of thénigh accuracy for the prediction gfstrands. One has to remark as
accuracy per residue and the S@er protein show that there are  well that with these two decomposition methods, no decrease of
still a small number of proteins that are poorly predictédy. 3). the accuracy ofH) and(C) states is observed.
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Fig. 3. Distribution of theQs per protein and the Sov of the cascaded multiple classifier.

Frishman and Argo$1997 have used another decompositon the remainder a$C). Using this decomposition method, Prof
(Method Q. They translated E a€), H as(H), and the rest into  achieves an accuracy per residue of 77.8 and 77.7% per protein.
(C), including EE and HHHH. Table 5 shows the results. With this 8-Strands are predicted with the same accuracy as with our de-
decomposition, Prof achieves an accuracy per residue of 77.9%omposition whilea-helices are better predicted. This represents
and an accuracy per protein of 77.8%. An increase of the predican improvement of 1% over our decomposition.
tion of the(H), (E) states is shown as expected since short helices These experiments using different decomposition methods give
and shortgB-strands(EE) are difficult to predict partly because a better idea of the performance of Prof. Furthermore, it shows that
they are less stable. This represents an improvement of 1% oveur algorithm is very stable with respect to the decomposition
our method of decomposition. method since a variation of onl¢1% is observed over the global

Salamov and Solovye(1995 used the following decomposi- accuracy. Theg-strands statéE) is obviously the most sensitive to
tion (Method D: GGGHHHH are translated into HHHHHHH, B  the way of translating thg-bridges(B), but at the residue level the
and G are redefined 4€), E are translated &), and H agH), fluctuations are+3%.

Table 5. Statistical analysis of the performance of Prof using different three states decompdsitions

Qs Qn Qe Qc Sov Sow Sov Sove
Decomposition method (%) (%) (%) (%) Cu Ce Cc (% (p)) (% (p)) (% (p)) (% (p)
Our method 76,7 788 716 776 0710 0.629 0574 #I3.9 71.1+29.9 756+26.0 71.1+ 15.0
Method A 76.0 787 684 777 0.709 0613 0561 T72.835 71.1+30.0 67.5+£29.5 70.0+ 13.9
Method B 758 787 681 777 0.709 0613 0559 78.13.6 71.1+299 68.4+289 70.8+ 14.1
Method C 779 845 734 756 0.735 0630 0595 72555 81.4+ 255 81.3+227 67.6+17.8
Method D 778 845 715 762 0.735 0628 0592 74.04.3 814+ 255 755+26.0 69.9+ 16.4

aSame nomenclature as Table 1 for the statistic per residue. We used the following decomposition methods:

Our method: H, G, b (H) ; E — (E) ; the remainder (C)

Method A:  H, G— (H); E and B— (E); the remainder— (C)

Method B: H, G, I-— (H); E — (E) but B— (EE), B B — (CCC); the remainder~ (C)
Method C:  H-— (H); E — (E); the remainder~ (C) including EE and HHHH

Method D:  GGGHHHHH— HHHHHHH; B, GGG — (C): H — (H); E — (E).
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Test on two independent test sets importance of long-range interactions for this class was previously

. I . gverestimated. We consider that our algorithm represents an im-
In developing a new prediction method, there is always a danger : . .
rovement in the field of secondary structure prediction.

of overfitting. To guard against this, we have made rigorous use oP
leave-one-out cross validation, which represents the best way of
assessing a prediction method. In addition, we have tested owaterials and methods
classifier on two independent test sets.
The first dataset is formed by 23 proteins coming from CASP3p ;4
(http;//PredictionCenter.linl.ggY. These are the proteins classi-
fied by the organizers in 1999 as protein with no homologousWe use a set of 496 nonhomologous domaiii$ie database can
sequences of known. We emphasize the fact that this set has nBe freely obtained by academics upon request to Geoffrey J. Barton
been included in the training set in any manner and constitutes gttp//barton.ebi.ac.uk) This dataset is based on the one devel-
truly new set of proteins for Prof. oped by Cuff and Bartof1999, and it is almost a proper superset
The dataset from CASP3 consists of 3,484 residues: 1,093 iff a training set of 126 domains used to originally train PHR®st
a-helix conformation, 851 if8-strand, and 1,540 in coil. It repre- & Sander, 199Band DSC(King & Sternberg, 1996 The defini-
sents a complete independent set of proteins in which our classifidfon of homology used is now stricter than used to train PHD and
shows an accuracy per residue of 76.0% and an accuracy p&SC. Cuffand Bartoii1999 did not use the percentage of identity
protein of 76.8% with a standard deviation of 10.5%; the Sov istO derive their nonredundant database; rather they used a more
75.1% with a standard deviation of 16.1%. The accuracy per restigorous method consisting on the computation of the similarity
idue for thea-helix state is 71.3%, 75.3% for th@strand state, ScoreSD (Feng et al., 1985; Barton & Sternberg, 1987
and 79.5% for the coil state. This result is in good agreement with
our estimated accuracy and Sov. We take this result on the CASP3 V —(X)
dataset only as a supplementary argument supporting our results SD=
with leave-one-out cross validation.

The second dataset considered was generated by James Cuff gjle e\ is the score for the alignment of two sequences A and B
Geoff Barton at the European Bioinformatics Instit(BI) using by a standard dynamic programming algoritiiideedleman &

the same procedure as the training data but on an updated releggg nsch 1970 The order of amino acid in both sequences A and
of the Protein Data BankPDB). The dataset consists of all non- B is randomized and realigned. This is re-performeies(n is
homologous domains added to PDB since formation of the traini”Qypically equal to 100 The average score) as well as the root-

setin 1996. This dataset consists of 405 domains. There are 81'9Hean-squarer are computed. According to the authd@uff &
residues: 28,277 in-helix conformation, 18,591 ig-strand, and g5 1999, there is no pair of domain proteins in the database
35,043 in coil. This dataset is large enough to identify differences, i, an sp score=5. This represents a much more stringent def-
between prediction methods, but it is possible that a few domaingjion of similarity than simply taking all of the proteins that share
were used to train one or more of the prediction methods. On th|§ess than 25% of identity to each other. Furthermore, tH805
dataset, our classifier has an estimate accuracy per residue of 77.29% off used to derive the database is more stringent lthan scores

and an accuracy per protein of 77.1% with a standard deviation Ofised in all previous studies of secondary structure predi¢Gaoiff
8.7%. The Sov is 75.1% with a standard deviation of 13.9%. In OUlg Barton, 1999.

current available implementation of Prof, the accuracy per residue The database contains 82,847 residues: there are 28,678 in helix
for thea-helix state is 73.4%, while the accuracy fostrand state o n¢ormation, 17,741 in beta-strand, and 36,428 in coil. Secondary
is 75.3%. The accuracy per residue for the coil state aChieve§tructure was assigned using the DSSP progiabsch & Sander,
81._2%. _This constitutes a supplementary argument supporting OWog3. Cuff and Bartor{1999 have shown that the exact mapping
estimation of the performances of Prof. of DSSP output to three states secondary structure can have a sig-
nificant effect on the resulting estimated accuracy. Therefore, we have
) used the following conservative mapping to train the method: H, I,
Conclusion G states from DSSP are translatedveselix (H), E is translated as

For the protein secondary structure prediction, we have reassessg#tstrands(E), and the remainder is translated as ¢Gi).
rigorously and completely, various GOR methods and simple three-
layered neural networks with and without the use of multiple align- . . .

S . . Generating the multiple sequence alignments
ments. We have shown how it is possible to improve secondary
structure prediction by exploiting the production of uncorrelatedWe used the BLAST program with the default parametéis-
errors from different kinds of predictors. Using this insight, we schul et al., 1990with the BLOSUM®62 matrix Henikoff & Heni-
have designed a cascaded multiple classifier for prediction thakoff, 1992 to search for homologous sequences on the NR protein
takes advantage of these various methods. The accuracy per redatabasérelease of April 17, 1998ontaining 299,576 sequences.
due of this method is 77%. This accuracy has been also reassessElde BLAST output was then filtered by the program TRIMMER
using three different state reductions. However, to achieve such @btained from M. Sagi This is an implementation of the Needle-
high accuracy, we have had to use a combination of complicatechan and WunsctiL970 algorithm and permits the performance of
nonlinear statistical methods. This has reduced the insight into tha global alignment between the target sequence and the homolo-
folding process provided by the method. Nevertheless, we havgous sequences found by BLAST. We select all the sequences
demonstrated that it is possible to design classifiers with both higtsharing between 25 and 97% of homology and which sizes lie
global accuracy and high accuracy @rstrands using only se- between the thresholds of 70 and 150% of the size of the target
quence information with a local window. This suggests that thesequence.

@

(o
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The similar protein sequences are then aligned using the praions, we used the program SOV written by A. Zemla and freely
gram CLUSTALW(version 1.7 with default parametef§hompson  available from the web sitéhttp://PredictionCenter.linl.goAtocal/
et al., 1994. This conservative procedure is the one that is usedss_evalsspred_evaluation.html
currently on the DSC servefhttp;//www.icnet.uk/bmm/dsc¢/
dsc_form_align.htmland is very close to the strategy used by PHD 1
(http://www.embl-heidelberg.dgpredictprotein ppDoPredDef. Sw(i)=——>>
html). N(i) )
During the CASP3 meetin@l998, it was shown that improve-
ment could be achieve using PSI-BLASAltschul et al., 1997
derived sequence profilé3ones, 1998 http;//globin.bio.warwick. X Ien(S)bs)]
ac.uk/psipred_info.html We explored this new idea by making
use of the profile matrices generated automatically by PSI-BLAST.
The PSI-BLAST iterative procedure is more sensitive than the N(i) = > len(Syd +s D, len(Sype
corresponding BLAST program in the sense that it can detect S(i) S'(i)
weaker but truly related sequences with respect to the query.

|: minw(S)bs, Sared) + S(Sabs‘ Spred)
maxw (S)bsv Spred)

8(Sopsr S)red) = min(maxa (Syps, Spred) — mina (Syps, Spred);

Prediction measurements

o MINQ (Sypsy Sprea); INt(1EN(Syps)/2);
We have used several measures of prediction success. We com-

puted the standard per resid@g accuracy that is defined as the
number of residues correctly predicted divided by the total number
of residues. This measures the expected accuracy of an unknown
residue. We also measured tQg per protein. The prediction ac-  The measures of success were estimated (esilegve-one-out
curacies for the three types of secondary structhteE, C) were  Cross-validation proceduréfull Jack-knifg), which is less biased
computed. We defin€y, as the total number af-helix correctly ~ than a simple n-fold cross validation. As we are using a cascaded
predicted divided by the total number @fhelix. We define in the ~ classifier, each stage was carefully tested by Jack-knife to avoid
same manne@g for B-strands and)c for coils. We computed the —any overfitting. This means that when assessing the prediction for
Mathews’ correlation coefficient as well for each stékéathews,  protein X belonging to a se§ all the classifiers of the cascade
1975: learn on the subsed without X.

Furthermore, we used two different test sets to assess our clas-
sifier, the first one comes from the CASP3 competition and con-
= withi € (H,E,C tains 23 proteins. This dataset consists of 3,484 residues. The

V(p+u)(pr + o) (n + u)(ny + o) second one was generated by J. Cuff and G. Barton at the European

Bioinformatics Institute(EBI) using the same procedure as the
@) training data but on an updated release of the PDB. This dataset
consists of all nonhomologous domains added to the PDB since the

int(len(Syrea)/2))- ©)

Pin — UG

where formation of the training set in 1996. This dataset consists of 405
pi = number of residues correctly positively predicted to struc-doma'ns'
turei,
n; = number of residues correctly negatively predicted, Predicting secondary structure using GOR methods

and fundamentals

All GOR methodgGarnier et al., 1978, 1996; Gibrat et al., 1987
0, = number of false positives. are based on the idea of treating the primary sequéaed the
] sequence of secondary structiBeas two messages related by a
More recently, it has been propose@ost et al., 1994; Zemla  yangation process. This translation process is examined using in-
et al., 1999 to use the Sov or segment overlap measure as g;rmation theory(Shannon & Weaver, 194@nd simple Bayesian

complement to the standard per residue accuracy. The aim of Sayagistics. By definition, the information function can be written as
is to assess “in a more realistic” manner the quality of a predictiong)|ows:

This is done by taking into account the type and position of sec-

ondary structure segment, the natural variation of segment bound-

aries among families of homologous proteins, and the ambiguity I(SiR) = In< P(S /Rj)> @
B

u; = number of false negatives, and

at the end of each segment. The quality of match of each seg- P(S)
ment pair is taken as a ratio of the overlap of the two segments
(MiNoMSyps, Sored)) @nd the total extent of that paimaxoySyps,

Sored))- The definition allows this ratio to be improved by extend- where

ing the overlap by the valu&(Syps, Syred)- In the following for- In = natural logarithm,

mula, S(i) denotes a pair of overlapping segmeffs,s, Sprea) I

conformationi € (H, E, C), S(i) denotes the set of all segment § = one of the three conformations or clas¢es E, C),

Sobs fOr which there is no overlapping segmesteq in statei (for
further details see Zemla et al., 19990 make these computa- R, = one of the 20 amino acids at positifn
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P(S§/R) = conditional probability for observing a conforma- All the information measures were estimated directly from fre-

tion § having a residud;, quencies, since the sample size is large enough to preclude the
) -~ ) ) need for a Bayesian estimation meth@ad initially recommended
P(§) = prior probability of having a conformatio§. (Robson & Suzuki, 1976f(S,R+m,R) is the frequency of con-

formationSat positionj when there is a residuRat positionj and
R’ atj + m. In this approximation, the pair information is taken
into accoun{information a residue carries about residue’s second-
ary structure that does depend on the other residue’s.type
For each residue in the protein, three functibsse computed,
f(S,R) f(S)
P(S/R) = and P(§)=— (5)  one for each of the three stat@d, E, O. ' .
f(R) N There are two ways to predict the structure of a residue: predict
the conformation having the highest difference information func-
wheref are frequencies arid is the total number of residues in the tion or compute the probability that the residue is in a s&te

All these quantities are directly computable from the database.
Applying the Bayes rule and the definition of a probability, it
follows that

database. (H, E, © from the information value as follows:
In theory, the conformation of any residue should depend on the

whole sequence. In practice, the authors of G@®Rbson & Pain, 1

1971; Garnier et al., 1978, 1996; Gibrat et al., 198%ke into p(S/X) = 3)

account only the local sequence around the residue of interest; 14+ —— e ((AS.X)

namely, they used a window of 17 residues. This means that to f(S)

predict the residu&; they use all the residues froR}_g to R ;g;
beyond these residues the information decregBebdson & Su-
zuki, 1976. This window is moved over the whole sequence. In
fact, they compute for each of the three states E, C) the
following information difference, which has to be interpreted as
the discriminant function betwee andS:

W|th X = (Rifg,...,RH,g) andS S (H, E, C) (9)

We emphasize that these two ways of assigning the secondary
structure result in two different classifiers, because in one case we
do not take into account the prior probability that a residue has the
conformationS, while in the second case we do. Figure 1 gives an
example of this.

1(AS:Ri-s.-- \Rixg) = 1(SiR-s.....Rjse) In GOR IV (Garnier et al., 1996 the authors use yet another
- approximation to take into account all the possible pairs formed by
—1(SiR-s--- Ryse) ® each residue in the window. The following approximation is used:
where§ is the complement of sta®®; for example, if§ is C then P(S,X) 2 m=j+8 (S, R+ ms Rin)
§is(H and B. n( — >~— . <_—>
In GOR | (Garnier et al., 1978 the following approximation is P(§,X) 17 m-j-8 f(S,Rj+mRjsn)
used for the computation of the information difference:
B 1_5m—i+8|n< f(a,Rj+m>>
AS:Ri-e- - Rive) 1705 e \f(S.Rm /) (10)
m=j+8
~ 2 Bl(AS 'Ritm) Here the computation of the probabiliti®¢S, X) are straightfor-
m=j—

ward from this equation. We have performed a reassessment of
these methods in this paper to study the advantages of each method.

mJre f(§,Ri+m) f(9)
= > <In<ﬂ>+ln<fS (7)
m=j—8 (S, Rjm) f(g)
wheref(§,R+m) is the frequency of conformatioB at position; Fisher’s linear discriminant function dates back to the 1930s. A
when there is a residuR at positionj + m. In this approximation, — dataset wittp attributes(such as input values or some function of

only the so-called directional informatiainformation a residue the input valuesandq possible classes is divided by~ 1 (p — 1)-
carries about another residue’s secondary structure that does ndimensional hyperplanes in such a way as to maximize the number

Linear discrimination

depend on the other residue’s type taken into account. of data points classified correctiyVeiss & Kulikowski, 1991. A
In GOR Il (Gibrat et al., 198, another approximation is used quadratic cost function is optimized to choose the “best” hyper-
for the computation of this function: planes. For two categories, the linear discriminant can be ex-
pressed as a multiple regression. For more than two categories, a
1(AS:R_g,....R1g) linear discriminant for each class is used. Equal covariance matri-
ces for the different categories are assumed as well as a Gaussian
m=j+8 distribution of the variables.
- Esl(AS’Rj+m/Rj) T\/—1 Ty\/—1
m=j— = _ -
F 0 = (mf — mpy b Y MY In<w>

m=j+ _ _ _ p(co)
_ 218<|n<—f(_§’R”m'R')>+|n<—f(§'R’)>>. ®)
m3j-8 (S, R+m R) f(S.R) (11
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where
X = vector of the attributes,

my, M, = vectors of means of the attributes for classes
1 and 2, respectively,

V ~1 = inverse of the covariance matrix for the pooled
population 1 and 2,

p(c1), p(cp) = prior probabilities for an element belonging
either to class 1 or class 2, respectively,

F(x) = linear discriminant function between class 1
and 2, and

Classes 1 and 2 § and§, respectively.

(The vector of attributes can typically be the set of probabilities
and Information functions computed using the different GOR
methods.

Quadratic discrimination

Quadratic discriminant functions are similar to linear ones, excep
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Hidden
Layer

Input
Layer

Output
Layer

t

that the boundary can be a “hypercurve” rather than a hyperplangsig. 4. Architecture of the three-layered feed-forward network used. For-
No assumption of equal covariance matrices is made, which mearmal neurons are drawn as circles; weights are represented by line connect-
that the algorithm should be robust for cases where the classd’d the neurons.

have different covarianceg$Veiss & Kulikowski, 1991.

1
F(x) = > XT(Vot =V Hx+ (miVit = miv; hx

+(m +|n< >+

This is different from the linear discrimination in that the two
populations to be discriminated are not pooled: the inverse o
covariance matrice¥; * and V, ! are assumed to be different.

V|2

Va2

myVo tm,—m{ Vi tmy
2

p(cy)
p(cy)

)

12

1986 to avoid oscillation problems, which are common with the
regular backpropagation algorithm when the error surface has a
very narrow minimum area. The width of the gradient steps was set
to 0.05 and the momentum term was QRbst & Sander, 1993
The initial weights of the neural nets were chosen randomly in the
range of[—0.01, 0.01. The learning process consists of altering
the weights of the connections between units in response to a
teaching signal that provides information about the correct classi-
fication in input terms. The difference between the actual output
find the desired output is minimiz¢the sum of squares erjor

For a three-layered neural network, the discriminant function

Also, a Gaussian distribution is assumed that leads to the previous(x) representing one single output can be written as follows:

quadratic formF(x) represents the quadratic discrimination func-

tion. We used our own implementation of linear discrimination and

quadratic discrimination for learning.

In both cases, linear and quadratic discrimination, the probabil
ity that an elementdescribed by the vector of attributesbelongs
to class 1 rather than class 2 is computed as

p(cl/x) = T3 e Fo (13

These two standard methods of discrimination are used here for the

combination of outputs from different versions of GOR or from

different neural networks to see if any improvements on the global

accuracy can be achieved.

Neural networks

A neural network learning system is a network of nonlinear pro-

cessing units that have adjustable weigiiig. 4). We used stan-

F(x) = Sigm(}j: n Sigm(}i‘twi,jxi — mj> — mout>

with Sigm(y) = (14

1+e™Y

where
x = a set of vector of attribute§nput signal,

= hidden-to-output weights,

i
Wi,j =
m

Moyt = Output neuron’s bias.

input-to-hidden weights,

hidden layer bias values, and

The target outputs are coded(@sO0 0) for a-helices,(0 1 0 for
B-strands, and0 0 1) for coil states. All the neural networks have

dard three-layered fully connected feedforward networks with thebeen trained on a set of 445 proteins, and 50 proteins are used to

backpropagation with momentum learning rule u$Bdess et al.,

detect convergence. When convergence is achi@ygpitally less
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than 40 steps of minimizatigrwe predict the protein that has been 1997). In this work, we used different background theories and
left out. We use a simple “winner take all” strategy for the clas-resampling techniques to generate multiple classifiers. The ques-
sification (Rost & Sander, 1993 It has been shown that the net- tion of why the combination of an ensemble of classifiers should
work outputs can be interpreted as estimated probabilities of correa priori perform better can be intuitively answered by the fact that
prediction, and therefore they can indicate which residues are praincorrelated errors made by different classifiers can be removed
dicted with high confidencéRiis & Krogh, 1996. by correctly combining them. Another question that arise imme-
To generate the neural network architecture and the learnindiately is: why shouldn’t we be able to find a single classifier that
process, we make use of the SNNS program version 4.2 freelperforms as well as an ensemble?
available from the ftp site, ftp.informatik.uni-stuttgart(@=ll et al., This question can be answered in three paibigtterich, 1997
1998. (1) The training data may not provide sufficient information to
We use neural-network classifiers in four different ways: choose a single best classifier, and instead different “hypotheses”
) ) ) appear to be equally accurat@) The chosen learning algorithm
1. We learn simple sequences using the same coding procedure ggyy not be able to solve correctly the search problem that we pose.
Qian and Sejnowski1988 and Rost and Sandét993. For example, neural network algorithms employ local search meth-

2. We learn sequence profiles generated from our multiple alignpds'(s) Ou.r hypothesis space may not contain the true function.
Instead, this space may contain different approximations.

ment with and without taking gaps into account. For each res- Gi that h trained ble of classif h

idue the frequency of occurrence is computed. Each of these 2 Iven thal we have trainec an ensemble of classiliers, how

real numbers then represents a basic cell of the input k2ger should we combine their individual classification decisions? The
existing methodologies can be subdivided into unweighted vote,

residuest 1 cell for the ga
gaps weighted vote, gating network, and combination via stacking.

3. Following the idea of Joned 998, we also used the profile
computed by PSI-BLAST after three iterations. This produces a ™
different profile, first, because it detects more related sequences
with weak similarity, and second, because the probabilities of
occurrence of an amino acid at a specific position are computed
using more powerful statisti¢¥atusov et al., 1994This method
uses the prior knowledge of amino acid relationships embodied
in the substitution matrikblosum62 to generate residue pseudo- 2.
count frequencies, which are averaged with the observed fre-
guencies to estimate the probability that a residue is at specific
position in the query sequendéor more details see Tatusov
et al., 1994; Altschul et al., 1997Moreover, the different se-
guences are weighted accordingly to the amount of information
they carry.

4. We use neural networks to combine outputs from different clas-
sifiers (i.e., different versions of GOR, different netwoyks
design more powerful predictors. By combining a set of differ-
ent classifiers in this way, it is possible to obtain an enhanced
predictor, only if the individual classifiers disagree with one
another(Hansen & Salamon, 1990which means that some-
how the produced errors are uncorrelated.

We use a window of 13 for both the profiles and single se-
guences, which means that to predict a residue we take into ac-
count the 6 previous residues and the 6 following ones, the predicted
residue being at the central position of the window. The window is
shifted residue by residue through the protein. However, for com-
parison we use as Jon€998 a window of 17 residue&ve tried
also a window of 13 residues and obtained very similar restdts
learn the profiles generated by PSI-BLAST.

Theoretical foundations of the combining approach

The idea of combining multiple classifiefsuch as neural net-
works) into a single superior predictor has these recent years re-
ceived great research inter¢Rost & Sander, 1993; Bishop, 1995;

1. The simplest approach is to take an unweighted @temen,

1989. One refinement on simple majority vote is when each
classifier can produce class probabilities. It is then possible to
average these probabilities and choose the class having the
highest probability. This is the strategy adopted by the program
PHD (Rost & Sander, 1993

Many different weighted voting methods have been developed
for ensembleg Perrone & Cooper, 1993 For classification
problems, weights are usually obtained by measuring the accu-
racy of each individual classifie€; and constructing weights
that are proportional to those accuradi@l & Pazzani, 1996.

3. Another approach for combining classifiers is to learn a gating

network or a gating function that takes the input features vector
x and produces as output the weights to be applied to compute
the weighted vote of the classifiedordan & Jacobs, 1994
The output of each classifier is a probability distribution over
all the possible classes while the output of the gate is a prob-
ability distribution over the classifiers.

4. A procedure called “stacking” can be used. Having different

classifiers trained on a set of training examples. The goal of
stacking is to learn a good combining classifier. Wol{#392
proposed the following scheme for learning using a form of
leave-one-out cross validation. The output of each classifier
obtained using the leave-one-out cross-validation procedure gives
a new dataset of “level 2" examples. Now we can apply some
other learning algorithm to this level 2 data to obtain a more
accurate classification. Breim#&h996 applied this approach to
combine different forms of linear regression with good results.
Stacking can be used either to combine models or to improve a
single model. In this paper, we have more particularly investi-
gated a stacking method consisting of four levels and we show
how this technique can be successfully use to improve the
prediction.
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