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Cascaded multiple classifiers for secondary
structure prediction

MOHAMMED OUALI and ROSS D. KING
Department of Computer Science, University of Wales, Aberystwyth Penglais, Aberystwyth,
Ceredigion SY23 3DB, Wales, United Kingdom

~Received August 30, 1999;Final Revision February 21, 2000;Accepted March 30, 2000!

Abstract

We describe a new classifier for protein secondary structure prediction that is formed by cascading together different
types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7%
~assessed by a rigorous full Jack-knife procedure! on a new nonredundant dataset of 496 nonhomologous sequences
~obtained from G.J. Barton and J.A. Cuff!. This database was especially designed to train and test protein secondary
structure prediction methods, and it uses a more stringent definition of homologous sequence than in previous studies.
We show that it is possible to design classifiers that can highly discriminate the three classes~H, E, C! with an accuracy
of up to 78% forb-strands, using only a local window and resampling techniques. This indicates that the importance
of long-range interactions for the prediction ofb-strands has been probably previously overestimated.

Keywords: neural network; prediction; protein; secondary structure; statistics

Although the protein folding process may require catalysts such as
chaperonins~Hubbard & Sander, 1991!, it is widely accepted that
the three-dimensional~3D! structure of a protein is related to its
sequence of amino acids~Epstein et al., 1963; Anfinsen, 1973;
Ewbank & Creighton, 1992; Baldwin & Rose, 1999!. This implies
that it is possible to predict protein structure from sequence with
high accuracy. The most general and reliable way of obtaining
structural information from protein sequence data is to predict
secondary structure. The aim of secondary structure prediction is
to extract the maximum information from the primary sequence in
the absence of a known 3D structure or a homologous sequence of
known structure. With the increasing number of amino acid se-
quences generated by large-scale sequencing projects, and the con-
tinuing shortfall in crystallized homologous structure, the need for
reliable structural prediction methods becomes ever greater.

Many approaches have been proposed to tackle this problem,
and they can be approximately grouped into those using simple
linear statistics either on residues or physicochemical properties or
even both~Robson & Pain, 1971; Chou & Fasman, 1974; Lim,
1974; Robson & Suzuki, 1976; Garnier et al., 1978; Cohen et al.,
1983; Ptitsyn & Finkelstein, 1983; Gibrat et al., 1987; King &
Sternberg, 1996; Avbelj & Fele, 1998!; those using symbolic ma-
chine learning~King & Sternberg, 1990; Muggleton et al., 1992!;
and those using sophisticated nonlinear statistical methods for pre-
diction, which are often based either on neural networks exploiting
patterns of residues and0or physicochemical properties~Qian &

Sejnowski, 1988; Holley & Karplus, 1989; Kneller et al., 1990;
Rost & Sander, 1993; Riis & Krogh, 1996; Kawabata & Doi, 1997;
Baldi et al., 1999; Jones, 1999! or on k-nearest-neighbor methods
~Biou et al., 1988; Zhang & Chou, 1992; Yi & Lander, 1993;
Geourjon & Deleage, 1994; Salamov & Solovyev, 1995, 1997;
Frishman & Argos, 1996, 1997; Levin, 1997!. A fair comparative
assessment of these different methods turns out to be difficult, as
they use different datasets for the learning process and different
secondary structure assignments~Cuff & Barton, 1999!. However,
a number of authors have designed methods with accuracies above
the threshold of 70% accuracy taking advantage from multiple
sequence alignments~Rost & Sander, 1993; Salamov & Solovyev,
1995, 1997; King & Sternberg, 1996; Levin, 1997! or selected
pairwise alignment fragments~Frishman & Argos, 1997!. These
accuracies have been confirmed in the series of CASP blind trials
~http:00PredictionCenter.llnl.gov0!.

In this paper, we present the results of an in-depth analysis of the
performance of a new classifier for protein secondary structure
prediction Prof~Protein forecasting!. Prof is formed by cascading
~in multiple stages! different types of classifiers using neural net-
works and linear discrimination. To generate the different classi-
fiers, we have used both GOR formalism-based methods extended
by linear and quadratic discriminations~Garnier et al., 1978, 1996;
Gibrat et al., 1987!, and neural network-based methods~Qian &
Sejnowski, 1988; Rost & Sander, 1993!. The theoretical founda-
tion for Prof comes from basic probability theory, which states that
all of the evidence relevant to a prediction should be used in
making that prediction~Jaynes, 1994!. This means that it should be
possible to improve predictions by combining different algorithms
or the same one trained in different ways or on different sets, as
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long as the classifiers produce noncorrelated errors~i.e., if the
produced errors do not all correlate with each other!.

Prof represents a compromise between classifiers having differ-
ent properties and achieves a global accuracy per residue of 76.7%
on our nonhomologous data set, using a full jack-knife testing
procedure~leave-one-out cross-validation!.

We analyze the performance of each classifier and compare
them with and without the use of evolutionary information~mul-
tiple alignments!. We show that it is possible to obtain classifiers
with global accuracies at better than 75% and capable of predicting
b-strands with an accuracy per residue of better than 77–78%~with
a-helix predicted at better than 79% and coils at better than 71%!.
While it has long been argued that the lower accuracy forb-strands
was mainly due to the fact that all secondary structure methods do
not take into account long-range interactions, and some attempts
have been published using a double window forb-strands predic-
tions to overcome this difficulty~Krogh & Riis, 1996; Frishman &
Argos, 1997!. Our results indicate that the importance of long-
range interactions for the prediction ofb-strands has been proba-
bly overestimated up to now.

Results and discussion

Assessment of secondary structure classifiers without
using evolutionary information0GOR methods
vs. single neural networks

Table 1 shows the evaluation of five different GOR methods~Gar-
nier et al., 1978, 1996; Gibrat et al., 1987! and their combinations
using linear and quadratic discriminations. To the best of our knowl-
edge, this is the first time that an exhaustive comparison on the
same database of all the GOR algorithms has been published.
Surprisingly, a GOR I algorithm that uses probabilities to perform
the classification task exhibits a higher estimated Q3 per residue
than both GORIII and GORIV. This result is confirmed by the
analysis of the Matthews’ correlation coefficients. We found that

GORIV, on our database, has an estimated accuracy per residue of
61.3%, while the authors give an estimate of 64.4%. We confirm
the estimate of Cuff and Barton~1999!, who show a reduction of
the accuracy by 4% using a similar procedure to three states re-
duction from DSSP~Kabsch & Sander, 1983!. This result under-
lines the difficulties of comparing different methods from different
papers, and the importance of the reduction protocol. The mea-
surements of the accuracy per proteins instead of per residue con-
firm these observations~data not shown!, although the Sov~segment
overlap measure! ~Table 1! for GORIV is globally the same as for
GORI. The Sov measures for the GOR III are particularly poor,
and in all cases the global Sov does not exceed 60%, implying a
lack of correlation in the prediction of adjacent residues at this
stage. The addition of pair information~information a residue car-
ries about another residue’s secondary structure that does depend
on the other residue’s type! and the so-called pair–pair information
does not increase the global Q3. The principal effect of using the
probabilities to make a decision, rather than simply taking the state
having the highest information value, is that the prediction then
reflects the proportion of the three states~H, E, C! in the database.
When the decision is taken on the information basis,b-strands are
better predicted and a decrease of theQc is observed. The reason
that the use of probabilities can lead to a different answer from the
information is explained by Figure 1. This shows that with the
same algorithm it is possible to design two very different classi-
fiers. This is a key observation in the formation of multiple clas-
sifier combinations for improving secondary structure prediction.

The accuracy of GOR methodologies can also be improved by
using simple linear discrimination. The vector used consists of the
three information values of each classifier using only information
and the two probabilities~probabilities fora-helix andb-strand!
for the classifiers using probabilities~Table 1!. A gain of more than
2% for theQ3 is observed over GORI using probabilities. That this
combination produces a better classifier is also clearly shown by
the examination of the Matthews’ correlation coefficients. A qua-
dratic discrimination was performed on the results of the linear

Table 1. Statistical analysis of the different GOR methods and neural network method without the use of multiple alignmenta

Method
Q3

~%!
QH

~%!
QE

~%!
QC

~%! CH CE CC

Sov
~% ~ p!!

SovH

~% ~ p!!
SovE

~% ~ p!!
SovC

~% ~ p!!

GOR I ~Information! 60.7 64.7 57.8 58.9 0.420 0.371 0.408 56.46 12.1 57.16 25.8 66.96 22.0 53.16 14.9
GOR I ~Probability! 62.3 65.0 37.0 72.4 0.422 0.360 0.406 56.76 12.5 59.06 26.1 52.16 26.7 59.56 14.7
GOR III ~Information! 59.0 68.8 56.6 52.5 0.416 0.347 0.383 43.26 11.4 49.66 24.4 59.56 23.4 40.96 13.6
GOR III ~Probability! 61.1 70.2 42.3 63.0 0.420 0.348 0.395 45.16 11.3 51.76 24.3 50.86 25.8 47.206 14.7
GOR IV 61.3 69.3 43.9 63.4 0.463 0.315 0.387 56.96 12.2 62.26 25.3 56.86 25.3 53.56 15.5
GOR ~linear reg.! 64.3 64.7 41.8 75.0 0.467 0.388 0.432 57.06 11.6 57.46 25.7 56.16 25.6 61.66 14.3
GOR ~quadratic reg.! 62.3 71.3 54.8 58.8 0.464 0.403 0.391 57.56 13.2 59.96 25.7 62.56 25.2 54.36 15.3
Neural network~u! 65.3 65.9 44.6 75.0 0.494 0.399 0.446 55.66 12.4 56.96 25.6 55.56 26.2 60.66 14.8
Neural network~b! 64.0 65.4 62.8 63.4 0.491 0.412 0.445 56.56 12.8 57.36 25.7 66.56 22.9 56.76 15.3

aQ3 is the accuracy per residue~see Materials and methods!; QH, QE, andQC are the accuracies fora-helix, b-strand, and coil, respectively.CH, CE,
andCC are the Matthews’ correlation coefficients fora-helix, b-strand, and coil, respectively. The Sov is the averaged segment overlaps measure per protein
for the three states. SovH , SovE, and SovC are the averaged segment overlap per protein fora-helix, b-strand, and coil, respectively; the corresponding
standard deviations are shown. This table summarizes the statistics for the different GOR methods and the neural-network methods without the use of
multiple alignment. GOR I~information! is the GOR I algorithm using only the three computed information values for the decision process. GOR I
~probability! is the GOR I algorithm with an explicit computation of the probability of each class~the decision is taken on the basis of the highest
probability!. Same for GOR III~information! and GOR III~probability!. GOR~linear reg.! represents a combination of the five GOR algorithms using linear
discrimination. GOR~quadratic reg.! is a quadratic discrimination over the GOR~linear reg.! algorithm using a window of seven residues. Neural network
~u! is the network trained in an unbalanced. Neural network~b! states for the network trained in a balanced way.
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discrimination using a window of seven residues~the components
of the vector are the probabilities fora-helix andb-strand!. The
result is an improvement over the prediction of H and E states with
respect to the five methods. It was not possible to improve the
global accuracy using quadratic discrimination. We used linear and
quadratic discriminations to produce “new” classifiers. As it was
possible to obtain an improvement over the GOR methods, we
conclude that the errors produced by the different classifiers are
not all correlated.

Table 1 also shows the evaluation of a single three-layered neu-
ral network trained in both a balanced and unbalanced way. The
use of the unbalanced network is formally equivalent to the use of
the observed class distribution as prior probabilities for each class
~H, E, C! in the learning process: while the balanced network is
equivalent to the use of uniform prior probabilities—in each epoch
a random resampling is performed to achieve the redistribution of
~1, 1, 1! for each class. The networks we used contained 133 21
input cells ~20 residues1 gaps!, the hidden layer contained 30
cells, and the output had 3 cells. The neural network trained in an
unbalanced way has an accuracy per residue of better than 65%,
while the balanced one showed a decrease in the global accuracy
of ;1%. All the methods that explicitly take into account the prior
probability of occurrence for each class fail to accurately predict
b-strands. The Matthews’ correlation coefficients show that the

neural network method is more accurate than any of the GOR
algorithms when analyzed at the residue level, while at the seg-
ment level the performance was rather similar~Table 1!. However,
the Sov should not be used to assess the performance of a classifier,
but rather to assess the quality and the usefulness of a prediction as
the Sov can be improved by applying a second “structure-to-
structure” network~Rost & Sander, 1993! or simple smoothing
filters ~King & Sternberg, 1996; Zimmerman & Gibrat, 1998!. By
using such a strategy, one can take into account~at least in part! the
correlation between adjacent residues.

Assessment of GOR methods using evolutionary information
(multiple sequence alignment)0first stage of our classifier

The alignment of homologous sequences provides additional in-
formation for predicting secondary structure. When dealing with
statistical methods, the simplest way of using this extra informa-
tion is to average the GOR information or probabilities over the
aligned residues. This is equivalent to extending the GOR predic-
tion algorithms to include homologous information~Zvelebil et al.,
1987!. All the proteins used in our multiple alignment were unique
and had a minimum of 25% sequence identity with respect to the
target sequence, insertions in the multiple alignments are ignored,
and each sequence is predicted without any insertions, then the

Fig. 1. Computed curves displaying the probability vs. the information values using Equation 9. The curve on the left side shows the
relationship between the information values for the coil and the corresponding probability, the middle one fora-helix and right one
for b-strands. Each curve depends on the prior probability of the considered class. For a same of information value~in the area of the
slopes!: the probability for coil will be higher than the probability fora-helix andb-strand, the probability ofa-helix will be higher
than the probability ofb-strand. Due to the observed shifts, using the probability instead of the information will favor the prediction
of first the C state over the E state, second of the H state over the E states, third of the C state over the H state. Therefore, this will
lead mainly to an underprediction of the E state.
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average took place. Table 2 shows the analysis of this experiment.
By using multiple alignments, it was possible to improve the ac-
curacy of the different GOR algorithms by 4–5% over that of a
single sequence. The best algorithm was still found to be the com-
bination of all the GOR algorithms using linear discrimination: this
method achieves aQ3 per residue of 68.7% and aQ3 per protein of
69% over the whole database~data not shown!. a-Helices and
b-strands are better discriminated as shown by the systematic im-
provement of the Matthews’ correlation coefficients. This indicates
that the use of multiple alignment diminishes the number of false
positives and false negatives. The Sov is improved by 4–7% de-
pending on the method used. The combined method using qua-
dratic discrimination over a window of seven adjacent residues
exhibits the highest value for Sov~more than 64%! as expected,
since this kind of discrimination allows the correlation between
adjacent residues to be taken into account.

This improvement using multiple aligned sequences agrees with
the work of Zvelebil et al.~1987!, who also found a mean im-
provement of 4% in accuracy on a set of 11 protein families. Levin
et al.~1993! have obtained a mean improvement of 8% over seven
protein families, using alignments obtained by spatial superposi-
tion of main-chain atoms in known tertiary protein structures, and
they obtained using an automated procedure of multiple alignment
an improvement of around 6.8%. It is difficult to draw firm sta-
tistical conclusions from this previous work~about the expected
increase in accuracy obtained by using multiple alignments!, but
we recognize that our procedure is clearly far from optimal.

However, we will show that it is still possible to extract more
information by exploiting the generation of multiple classifiers.

Generation of multiple neural network using evolutionary
information, second stage of the classifier

We compared the combined GOR methods using linear discrimi-
nation and quadratic discrimination with neural networks. We com-
bined the 7 GOR methods using small neural networks having 21
inputs over a window of 7 residues, a single hidden layer of 14
cells, and as usual 3 output cells. We learned the output of the
different GOR methods, namely information and probabilities, with-
out any normalization procedure. The chosen strategy was to learn
only the residues~output of GOR! that exhibit no consensus in the
prediction over the seven GOR methods, since the produced errors
are uncorrelated. The residues for which a consensus existed be-
tween all the seven methods were simply passed through another
similar network to produce an homogenate output. This was done

in both a balanced and an unbalanced way. Interestingly, when the
seven GOR methods agree each other, the global accuracy is 78%
on the subset of residues with consensus, while the accuracy is
only 55% on the subset of residues without consensus between the
classifiers. Using such a procedure, it is possible to boost the GOR
method to 71.4%~using the per-residue accuracy! for the unbal-
anced trained network and to 70% for the balanced one, which
represents an improvement of 2% over linear discrimination and
more than 5% over any individual GOR algorithm; the Sov is also
improved ~Table 3!. The increase of the global accuracy is ex-
plained by the fact that the subset of residues without consensus is
predicted correctly at 61% after the neural network step, which
represents an improvement of 7% on this subset. Characteristi-
cally, the consensus subset always exhibits a global accuracy of
78%. This combination of GOR algorithms generates a classifier
whereb-strands anda-helices are better discriminated as shown
by the Matthews’ correlation coefficients.

Another simple and direct way of using multiple aligned se-
quences when dealing with neural networks is to compute the
corresponding profile. We compute the profile first by explicitly
counting the gaps~profile 1! and second by ignoring the gaps
~profile 2!. The architecture of these networks is the same as the
one used for single sequences. This produces different classifiers
whose characteristics are shown in Table 3. Their accuracies per
residue are at;71%, which represents an improvement of 5% over
the neural networks using only single sequences, as in the case of
GOR.

Recently, at the CASP3 meeting~third meeting on the critical
assessment of techniques for protein structure prediction! ~http:00
PredictionCenter.llnl.gov0casp30Casp3.html!, D. Jones used the pro-
file generated by PSI-BLAST to design a set of networks that
performed particularly well~Jones, 1999!. This procedure has the
following basic advantages: more distant sequences are found; the
probability of each residue at a specific position is computed using
a more rigorous statistical approach; and each sequence is properly
weighted with respect to the amount of information it carries~Alt-
schul et al., 1997!. This way of using multiple alignments is a step
forward. We therefore also made use of PSI-BLAST profiles in an
analogous manner to the work of D. Jones. The NR database was
filtered to remove segment with low complexity~Jones, 1999!. For
direct comparison, we used the same architecture for the neural
network as D. Jones, namely 173 20 input cells and 75 cells for
the hidden layer used with three outputs cells~however, this ar-
chitecture only produced a small difference on global accuracy
from our standard architecture!. This network was trained in a

Table 2. Statistical analysis of the different GOR algorithms using multiple alignmenta

Method
Q3

~%!
QH

~%!
QE

~%!
QC

~%! CH CE CC

Sov
~% ~ p!!

SovH

~% ~ p!!
SovE

~% ~ p!!
SovC

~% ~ p!!

GOR I ~Information! 65.3 69.2 61.3 64.3 0.499 0.440 0.461 61.06 13.6 61.36 26.6 71.66 22.8 57.46 15.9
GOR I ~Probability! 66.3 68.8 36.2 79.0 0.499 0.415 0.462 59.86 13.2 63.16 27.2 52.06 27.9 63.06 14.1
GOR III ~Information! 64.4 75.7 62.0 56.7 0.505 0.437 0.445 50.36 13.3 57.76 24.8 66.56 23.3 45.46 15.2
GOR III ~Probability! 65.8 76.0 42.7 69.0 0.497 0.421 0.459 52.36 13.2 60.46 25.2 53.46 26.0 53.26 15.8
GOR IV 65.4 74.7 42.3 69.3 0.528 0.376 0.438 60.86 13.0 68.16 25.7 57.16 25.9 57.26 16.1
GOR ~linear reg.! 68.7 68.2 47.2 79.5 0.552 0.463 0.487 62.76 13.3 63.16 26.9 61.16 25.5 65.56 14.4
GOR ~quadratic reg.! 68.0 73.8 61.5 66.6 0.566 0.481 0.465 64.56 13.4 66.76 26.3 68.36 24.3 61.76 14.9

aSame nomenclature as Table 1 after the use of multiple alignment.
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balanced and unbalanced way to generate classifiers with different
properties. We obtained two classifiers whose accuracies per res-
idues are 73.6 and 72.5%, respectively, which represents an im-
provement of 2% over NN-GOR and 2 to 3% over the neural
network using a standard profile~profile 1 or 2! ~Table 3!. It is also
an improvement of more than 7 to 8% over the neural network
using only single sequences. The Matthews’ correlation coeffi-
cients also show that the PSI-BLAST profile carries more infor-
mation, as the three coefficients are improved by 1.5 to 5%.
a-Helices andb-strands are also better discriminated. The Sov
measurements indicate that at this stage the “Psi-Blast” networks
do not perform better than the other profile-networks and that
NN-GOR networks are even better from this point of view: this is
to be excepted since a better Sov requires a second step of filtering
or regularization. Our work confirms the results of D. Jones and
shows that such classifiers have different properties, but the gap
between “standard profiles” and “psi-blast profiles” is not as wide
as expected from theQ3 point of view as previously suggested at
the CASP3 meeting. However, more information does seem to be
extracted from the PSI-BLAST profile by the networks. This is
explained partly by the fact that the learning process occurs over
the profiles and that somehow we are learning directly from the
multiple alignment, which was not the case, for example, when we
used a simple average over the multiple alignment with the GOR
algorithms.

The method of Jones using the PSI-BLAST profile has an av-
erage estimated accuracy per residue of 76.5%, based on a bench-
mark of 187 unique protein folds with full cross validation. By
chain, the meanQ3 score is 76.0% with a standard deviation of
7.8%~http:00globin.bio.warwick.ac.uk0psipred0psipred_info.html!.
To achieve this result, the author used a large database of 1,887
proteins where the threshold for sequence identity is 95%. Those
proteins form the “N-level” in the CATH database~Orengo et al.,
1997!. For cross validation, he used fold similarity and sequence
identity to exclude chains from that list—chains that share a com-
mon domain fold~i.e., have a domain with identical CATH num-
bers! or that have a sequence identity superior to 25% to the test
protein chains are excluded from the training set~Jones, 1999!.
The use of only the PSI-BLAST profile does not alone produce as
high an accuracy as 76.5%, as we have demonstrated on our own

database that was constructed using a strict homology cutoff~sim-
ilarity score ~SD! less than 5; see Materials and methods!. We
therefore speculate that the PSI-PRED method of Jones~1999!
obtains its high accuracy by exploiting the extra information avail-
able in homologous tertiary structures. Indeed, the fact that two
homologous proteins share the same fold does not imply that the
secondary structure of the two homologues are strictly similar; on
the contrary, differences are expect to be observed. As stated in the
introduction, it is a basic rule in statistics that all relevant infor-
mation should be used in predictions. PSI-PRED is the first pre-
diction method to exploit multiple homologous tertiary structures.
Previous methods~and our approach! have avoided using such
data because of the danger of biasing toward folds with many
structures. We therefore believe that PSI-PRED obtains high ac-
curacy by use of this new source of information~3.8 times more
structures!: while Prof obtains high accuracy by more efficient use
of data. If this is true, it may be possible to combine such ap-
proaches to produce a method with higher accuracy than either
PSI-PRED or Prof.

Combining all the generated neural network from stage 2
to achieve higher accuracy0third stage of the classifier

The third stage of our classifier consists of combining the eight
different classifiers generated from stage 2~Fig. 2!. To do this, we
use both simple linear discrimination and a neural network trained
in a balanced and an unbalanced way. The linear discrimination
uses a vector whose dimension is 24~three output values by clas-
sifiers!, and no correlations between adjacent residues are intro-
duced. The architecture of the network used at this stage consists
of 243 13 input cells~we use a window of 13 residues to predict
the central residue!; the hidden layer is made of 40 cells and it has
three outputs. By using such a strategy, we are again able to pro-
duce a set of highly accurate and different classifiers all better than
75%~accuracy per residue!. We obtained an improvement of 2.6%
at this stage with respect to stage 2 achieving even a per-residue
accuracy of 76.2% for the best classifier at this level. The prop-
erties of each classifier are analyzed in Table 4. The Matthews’
correlation coefficients show an improvement of 4 to 5% uni-
formly over the three states. The Sov measurements show an im-

Table 3. Statistical analysis of all the classifiers forming the second stage of Profa

Method
Q3

~%!
QH

~%!
QE

~%!
QC

~%! CH CE CC

Sov
~% ~ p!!

SovH

~% ~ p!!
SovE

~% ~ p!!
SovC

~% ~ p!!

NN-GOR ~u! 71.4 71.7 56.8 78.2 0.610 0.516 0.515 66.46 14.4 66.86 27.4 67.26 24.8 67.66 15.4
NN-GOR ~b! 69.8 74.7 69.0 66.3 0.599 0.516 0.499 64.16 13.7 65.86 25.9 72.16 22.1 61.56 15.2
NN profile 1 ~u! 70.6 70.2 55.0 78.5 0.585 0.500 0.515 64.16 13.4 64.56 25.9 66.06 24.7 66.66 14.8
NN profile 1 ~b! 69.1 72.1 67.6 67.6 0.585 0.496 0.497 60.96 14.7 63.36 25.9 70.76 22.1 59.06 16.5
NN profile 2 ~u! 70.2 71.5 55.0 77.5 0.590 0.503 0.515 62.76 13.9 63.76 26.9 64.36 25.2 65.06 15.1
NN profile 2 ~b! 69.3 72.3 68.6 67.3 0.587 0.502 0.502 62.66 13.9 63.46 26.0 72.46 21.9 60.96 16.0
NN profile-blast~u! 73.6 75.8 60.9 78.0 0.650 0.564 0.530 62.96 14.5 65.56 26.7 67.66 24.9 64.46 16.1
NN profile-blast~b! 72.5 76.6 74.6 68.4 0.651 0.571 0.524 62.46 14.5 65.86 25.9 74.86 21.6 59.66 16.2

aSame nomenclature as Table 1 for the statistics. All the classifiers make use of multiple aligned sequences. NN-GOR~u! states for the combination of
the seven GOR methods after the use of multiple alignment by a neural network trained in an unbalanced way. NN-GOR~b! states for the same combination
with a neural network trained in a balanced way. NN profile 1 states for the neural networks taking as input the profile computed with gaps, which means
that the profile is computed by treating gaps as a simple residue. NN profile 2 states for the networks taking as input a profile without gaps~Rost & Sander,
1993!. NN profile psi-blast states for the networks taking as input the profile derived from PSI-BLAST.~u! and~b! states always for the way of training:
unbalanced and balanced, respectively.
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provement of;6%, which is to be expected, since this step can be
also seen as a generalization of the second level of prediction in
PHD ~the level structure to structure! ~Rost & Sander, 1993!.
Furthermore, the network trained in a balanced way achieves a
global accuracy of only 75.1% but the accuracies fora-helix and
b-strands are 79.6 and 77%, respectively; the ability of discrimi-
nating between the three states is high as indicated by the Matthews’
coefficients.

This result undermines the argument thatb-strands are poorly
predicted mainly because the stabilization of such a structure re-
quires long-range interactions~to form b-sheets! that cannot be
captured using a single local window~Frishman & Argos, 1996;

Garnier et al., 1996!. We have shown that it is possible to predict
with high accuracyb-strands using a single window and resam-
pling techniques, confirming the earlier results of Rost and Sander
~1993!. Our results suggest that perhaps the lower accuracy for
b-strands is due mostly to the way the data are represented and
their frequency distribution.

Adding attributes to the classifiers0fourth and fifth
stages of the classifier

King and Sternberg~1996! showed that it was possible to boost the
GOR I algorithm using further attributes combined by linear dis-

Fig. 2. Architecture of the cascaded multiple classifier Prof. G stands for GOR;~i! for information;~p! for probability; NN for neural
network; ld for linear discrimination; qd for quadratic discrimination;~u! for neural networks trained in an unbalanced way;~b! for
neural networks trained in a balanced way. Stage 1 is constituted by GOR algorithms. Stage 2 contains the combination of GOR
algorithms using neural networks~NN-G! and also neural networks using different profiles~profile 1 and 2!, PSI-BLAST profiles
~psi-blast!. Stage 3 uses outputs from stage 2 combined by linear discrimination~ld combine 3! and neural networks~NN combine 3!.
Stage 4 uses outputs from stage 3 and the set of attributes~see text! to produce new classifiers using neural networks. These networks
are then averaged.
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crimination; they also obtained better balanced predictions by using
these attributes. In this work, we add to the three outputs of the three
classifiers of the previous stage the following selected attributes~we
selected only the attributes that gave improvements!: the moment
of hydrophobicity~Eisenberg, 1984! is computed for each residue
over a central window of seven under the assumption that these res-
idues are ina-helix; the moment of hydrophobicity assuming a
b-strand conformation; we add also the fraction of the following res-
idues H, E, Q, D, R, as well as the fraction ofa-helix andb-strand
~computed from the averaged three classifiers of the third stage!. The
architecture of the used networks are 133 18 input cells~window
of 13 and 18 values!, the hidden layer contains 30 cells, and we have
3 output cells. The network has been trained both in a balanced and
unbalanced way. Results are presented in Table 4. An improvement
of 0.7% is observed on the global accuracies. The accuracy for the
unbalanced trained network is close to 77% while the balanced one
is very close to 76% and exhibits even higher accuracy forb-strand
anda-helix. The prediction of theb-strand anda-helix population
is improved by 1 to 2% over the accuracies as well as the Mat-
thews’ coefficients. We therefore conclude that these attributes aid
in the discrimination of the three classes. The Sov measurements are
also improved~Table 4!. Finally, we average the two classifiers of
the fourth stage, which constitutes the final classifier that we call
Prof. We then obtain a classifier that has an estimated global ac-
curacy of around 77%; it predicts thea-helix at 79%, theb-strand
at 71.6%, and coils at 77.6%. This represents a compromise be-
tween the balanced and the unbalanced way of training a neural net-
work. This is the first time, to the best of our knowledge, that a
classifier predictsb-strand with such high accuracy~the statistical
analysis of the classifier is shown in Table 4!.

Proteins can be classified into four structural classes~Zhang &
Chou, 1992; Rost, 1996!. We analyzed Prof using this classifica-
tion. The final classifier has an accuracy per protein of 79.6% and
a Sov of 76.3% on the all-a family ~helix $ 45%, strand, 5%!,
on the all-b family ~strand$ 45%, helix, 5%!; the algorithm has
an accuracy of 76% with a Sov of 77.8%. For thea0b family
~helix $ 30%, strand$ 20%!, the accuracy per protein is also 76%
and the Sov is 76.5%. All the other proteins have an averaged
accuracy per protein of 75.5% with an Sov of 72.3%. A tool for
assisting in tertiary structure prediction should allow the user to
choose between the three final classifiers. The distribution of the
accuracy per residue and the Sov~per protein! show that there are
still a small number of proteins that are poorly predicted~Fig. 3!.

About the influence of alternative eight to three states
decompositions (from DSSP) on Prof

DSSP provides an eight states assignment of secondary structure
~Kabsch & Sander, 1983!. However, all the available prediction
methods are normally trained to predict three states~H, E, C!. It
has been argued recently that the way of decomposing these eight
states could have a dramatic effect on the accuracy of a method
~Cuff & Barton, 1999!. We then have tested Prof using different
decomposition methods. The results are presented in detail in Table 5.
Our goal is not to argue about the best way of decomposing the
eight states of DSSP into three states, as we think that all these
methods are defensible from a structural point of view. Instead, our
goal is to give a complete view of the performance of Prof using
different definitions.

In this paper, as stated in Materials and methods, we have used
the following conservative mapping to train the method: H, I, and
G states from DSSP are translated asa-helix ~H!, E is translated
asb-strands~E!, and the remainder is translated as coil~C!. Using
this mapping achieves an accuracy of 76.7%.

However, some authors used the following decomposition: E and
B as~E!, G and H as~H!, and the rest as~C! ~Cuff & Barton, 1999!.
This decomposition~Method A! treats isolatedb-bridges as part of
ab-sheet~E!. This increases the proportion of state~E!. One has to
keep in mind at this stage that Prof has not been trained with this
decomposition so a decrease of the accuracy is obviously to be ex-
pected. Nonetheless, with this method Prof still achieves an accu-
racy per residue of 76%. This is a decrease of 0.7% with respect to
our previous estimation. Theb-strand are still predicted with an ac-
curacy per residue of 68.4% instead of 71.6%; this is a decrease of
3.2% while the increase of the total population of the state~E! is of
6.1%. This level of accuracy in the~E! states is still the highest ac-
curacy ever reported to the best of our knowledge.

Rost and Sander~1993! have used another decomposition
~Method B!. In this method, H, G, and I are translated in~H!, E is
translated into~E!, B is translated in~EE!, and BB is translated in
~CCC!. The remainder is translated into~C!. This represents an
increase in the~E! population of 6.8%. Prof achieves an accuracy
of 76% per protein and 75.8% per residue. This is a decrease of
0.9% over our estimated accuracy of Prof. But Prof still exhibits a
high accuracy for the prediction ofb-strands. One has to remark as
well that with these two decomposition methods, no decrease of
the accuracy of~H! and ~C! states is observed.

Table 4. Statistical analysis of stages 3, 4, and 5 of Profa

Method
Q3

~%!
QH

~%!
QE

~%!
QC

~%! CH CE CC

Sov
~% ~ p!!

SovH

~% ~ p!!
SovE

~% ~ p!!
SovC

~% ~ p!!

Combine stage 3~linear! 75.7 75.7 61.9 82.3 0.686 0.599 0.568 69.66 14.0 69.56 27.7 71.06 24.2 70.76 14.7
Combine stage 3 NN~u! 76.2 77.7 64.9 80.5 0.699 0.608 0.571 72.66 13.5 72.86 27.6 72.96 24.9 71.36 14.6
Combine stage 3 NN~b! 75.1 79.6 77.0 70.6 0.699 0.604 0.558 71.76 13.6 73.26 26.9 77.76 22.0 67.76 15.3
Combine stage 4 NN~u! 76.8 78.1 66.7 80.7 0.709 0.626 0.576 73.56 13.6 71.06 29.9 72.86 27.2 72.26 14.4
Combine stage 4 NN~b! 75.7 79.7 78.1 71.5 0.710 0.619 0.561 72.46 14.0 71.06 29.8 77.46 24.4 68.06 15.0

Average stage 5 76.7 78.8 71.6 77.6 0.710 0.629 0.574 73.76 13.9 71.16 29.9 75.66 26.0 71.16 15.0

aSame nomenclature as Table 1 for the statistics. Combine stage 3~linear! is the classifier obtained by combining the eight neural networks from
stage 2~see Fig. 2! using linear discrimination. Combine stage 3 NN~u! and~b! state for the neural networks using as input the output of the eight networks
of stage 2 trained, respectively, in an unbalanced and balanced way. Combine stage 4 NN~u! and ~b! are the networks combining the three methods of
stage 3~linear discrimination and 2 networks! taking as input on one hand the output of stage 3 and, on the other hand, the computed attributes~moment
of hydrophobicity assuming ana-helix and ab-strand, fraction of residues H, E, Q, D, R in the sequence, fraction of predicteda-helix andb-strand!.
Average stage 5 represents the final classifier obtained by averaging the two classifiers of stage 4.
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Frishman and Argos~1997! have used another decompositon
~Method C!. They translated E as~E!, H as~H!, and the rest into
~C!, including EE and HHHH. Table 5 shows the results. With this
decomposition, Prof achieves an accuracy per residue of 77.9%
and an accuracy per protein of 77.8%. An increase of the predic-
tion of the~H!, ~E! states is shown as expected since short helices
and shortb-strands~EE! are difficult to predict partly because
they are less stable. This represents an improvement of 1% over
our method of decomposition.

Salamov and Solovyev~1995! used the following decomposi-
tion ~Method D!: GGGHHHH are translated into HHHHHHH, B
and G are redefined as~C!, E are translated as~E!, and H as~H!,

the remainder as~C!. Using this decomposition method, Prof
achieves an accuracy per residue of 77.8 and 77.7% per protein.
b-Strands are predicted with the same accuracy as with our de-
composition whilea-helices are better predicted. This represents
an improvement of 1% over our decomposition.

These experiments using different decomposition methods give
a better idea of the performance of Prof. Furthermore, it shows that
our algorithm is very stable with respect to the decomposition
method since a variation of only61% is observed over the global
accuracy. Theb-strands state~E! is obviously the most sensitive to
the way of translating theb-bridges~B!, but at the residue level the
fluctuations are63%.

Fig. 3. Distribution of theQ3 per protein and the Sov of the cascaded multiple classifier.

Table 5. Statistical analysis of the performance of Prof using different three states decompositionsa

Decomposition method
Q3

~%!
QH

~%!
QE

~%!
QC

~%! CH CE CC

Sov
~% ~ p!!

SovH

~% ~ p!!
SovE

~% ~ p!!
SovC

~% ~ p!!

Our method 76.7 78.8 71.6 77.6 0.710 0.629 0.574 73.76 13.9 71.16 29.9 75.66 26.0 71.16 15.0
Method A 76.0 78.7 68.4 77.7 0.709 0.613 0.561 72.86 13.5 71.16 30.0 67.56 29.5 70.06 13.9
Method B 75.8 78.7 68.1 77.7 0.709 0.613 0.559 73.16 13.6 71.16 29.9 68.46 28.9 70.86 14.1
Method C 77.9 84.5 73.4 75.6 0.735 0.630 0.595 72.56 15.5 81.46 25.5 81.36 22.7 67.66 17.8
Method D 77.8 84.5 71.5 76.2 0.735 0.628 0.592 74.06 14.3 81.46 25.5 75.56 26.0 69.96 16.4

aSame nomenclature as Table 1 for the statistic per residue. We used the following decomposition methods:

Our method: H, G, Ir ~H! ; E r ~E! ; the remainderr ~C!
Method A: H, Gr ~H!; E and Br ~E!; the remainderr ~C!
Method B: H, G, Ir ~H!; E r ~E! but B r ~EE!, B B r ~CCC!; the remainderr ~C!
Method C: Hr ~H!; E r ~E!; the remainderr ~C! including EE and HHHH
Method D: GGGHHHHHr HHHHHHH; B, GGGr ~C!; H r ~H!; E r ~E!.
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Test on two independent test sets

In developing a new prediction method, there is always a danger
of overfitting. To guard against this, we have made rigorous use of
leave-one-out cross validation, which represents the best way of
assessing a prediction method. In addition, we have tested our
classifier on two independent test sets.

The first dataset is formed by 23 proteins coming from CASP3
~http:00PredictionCenter.llnl.gov0!. These are the proteins classi-
fied by the organizers in 1999 as protein with no homologous
sequences of known. We emphasize the fact that this set has not
been included in the training set in any manner and constitutes a
truly new set of proteins for Prof.

The dataset from CASP3 consists of 3,484 residues: 1,093 in
a-helix conformation, 851 inb-strand, and 1,540 in coil. It repre-
sents a complete independent set of proteins in which our classifier
shows an accuracy per residue of 76.0% and an accuracy per
protein of 76.8% with a standard deviation of 10.5%; the Sov is
75.1% with a standard deviation of 16.1%. The accuracy per res-
idue for thea-helix state is 71.3%, 75.3% for theb-strand state,
and 79.5% for the coil state. This result is in good agreement with
our estimated accuracy and Sov. We take this result on the CASP3
dataset only as a supplementary argument supporting our results
with leave-one-out cross validation.

The second dataset considered was generated by James Cuff and
Geoff Barton at the European Bioinformatics Institute~EBI! using
the same procedure as the training data but on an updated release
of the Protein Data Bank~PDB!. The dataset consists of all non-
homologous domains added to PDB since formation of the training
set in 1996. This dataset consists of 405 domains. There are 81,911
residues: 28,277 ina-helix conformation, 18,591 inb-strand, and
35,043 in coil. This dataset is large enough to identify differences
between prediction methods, but it is possible that a few domains
were used to train one or more of the prediction methods. On this
dataset, our classifier has an estimate accuracy per residue of 77.2%
and an accuracy per protein of 77.1% with a standard deviation of
8.7%. The Sov is 75.1% with a standard deviation of 13.9%. In our
current available implementation of Prof, the accuracy per residue
for thea-helix state is 73.4%, while the accuracy forb-strand state
is 75.3%. The accuracy per residue for the coil state achieves
81.2%. This constitutes a supplementary argument supporting our
estimation of the performances of Prof.

Conclusion

For the protein secondary structure prediction, we have reassessed,
rigorously and completely, various GOR methods and simple three-
layered neural networks with and without the use of multiple align-
ments. We have shown how it is possible to improve secondary
structure prediction by exploiting the production of uncorrelated
errors from different kinds of predictors. Using this insight, we
have designed a cascaded multiple classifier for prediction that
takes advantage of these various methods. The accuracy per resi-
due of this method is 77%. This accuracy has been also reassessed
using three different state reductions. However, to achieve such a
high accuracy, we have had to use a combination of complicated
nonlinear statistical methods. This has reduced the insight into the
folding process provided by the method. Nevertheless, we have
demonstrated that it is possible to design classifiers with both high
global accuracy and high accuracy onb-strands using only se-
quence information with a local window. This suggests that the

importance of long-range interactions for this class was previously
overestimated. We consider that our algorithm represents an im-
provement in the field of secondary structure prediction.

Materials and methods

Data

We use a set of 496 nonhomologous domains.~The database can
be freely obtained by academics upon request to Geoffrey J. Barton
~http:00barton.ebi.ac.uk!.! This dataset is based on the one devel-
oped by Cuff and Barton~1999!, and it is almost a proper superset
of a training set of 126 domains used to originally train PHD~Rost
& Sander, 1993! and DSC~King & Sternberg, 1996!. The defini-
tion of homology used is now stricter than used to train PHD and
DSC. Cuff and Barton~1999! did not use the percentage of identity
to derive their nonredundant database; rather they used a more
rigorous method consisting on the computation of the similarity
scoreSD ~Feng et al., 1985; Barton & Sternberg, 1987!:

SD5
V 2 ^x&

s
~1!

whereV is the score for the alignment of two sequences A and B
by a standard dynamic programming algorithm~Needleman &
Wunsch, 1970!. The order of amino acid in both sequences A and
B is randomized and realigned. This is re-performedn times~n is
typically equal to 100!. The average scorêx& as well as the root-
mean-squares are computed. According to the authors~Cuff &
Barton, 1999!, there is no pair of domain proteins in the database
with an SD score$5. This represents a much more stringent def-
inition of similarity than simply taking all of the proteins that share
less than 25% of identity to each other. Furthermore, the 5SD
cutoff used to derive the database is more stringent than scores
used in all previous studies of secondary structure prediction~Cuff
& Barton, 1999!.

The database contains 82,847 residues: there are 28,678 in helix
conformation, 17,741 in beta-strand, and 36,428 in coil. Secondary
structure was assigned using the DSSP program~Kabsch & Sander,
1983!. Cuff and Barton~1999! have shown that the exact mapping
of DSSP output to three states secondary structure can have a sig-
nificant effect on the resulting estimated accuracy. Therefore, we have
used the following conservative mapping to train the method: H, I,
G states from DSSP are translated asa-helix ~H!, E is translated as
b-strands~E!, and the remainder is translated as coil~C!.

Generating the multiple sequence alignments

We used the BLAST program with the default parameters~Alt-
schul et al., 1990! with the BLOSUM62 matrix~Henikoff & Heni-
koff, 1992! to search for homologous sequences on the NR protein
database~release of April 17, 1998! containing 299,576 sequences.
The BLAST output was then filtered by the program TRIMMER
~obtained from M. Saqi!. This is an implementation of the Needle-
man and Wunsch~1970! algorithm and permits the performance of
a global alignment between the target sequence and the homolo-
gous sequences found by BLAST. We select all the sequences
sharing between 25 and 97% of homology and which sizes lie
between the thresholds of 70 and 150% of the size of the target
sequence.
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The similar protein sequences are then aligned using the pro-
gram CLUSTALW~version 1.7! with default parameters~Thompson
et al., 1994!. This conservative procedure is the one that is used
currently on the DSC server~http:00www.icnet.uk0bmm0dsc0
dsc_form_align.html! and is very close to the strategy used by PHD
~http:00www.embl-heidelberg.de0predictprotein0ppDoPredDef.
html!.

During the CASP3 meeting~1998!, it was shown that improve-
ment could be achieve using PSI-BLAST~Altschul et al., 1997!
derived sequence profiles~Jones, 1998! ~http:00globin.bio.warwick.
ac.uk0psipred_info.html!. We explored this new idea by making
use of the profile matrices generated automatically by PSI-BLAST.
The PSI-BLAST iterative procedure is more sensitive than the
corresponding BLAST program in the sense that it can detect
weaker but truly related sequences with respect to the query.

Prediction measurements

We have used several measures of prediction success. We com-
puted the standard per residueQ3 accuracy that is defined as the
number of residues correctly predicted divided by the total number
of residues. This measures the expected accuracy of an unknown
residue. We also measured theQ3 per protein. The prediction ac-
curacies for the three types of secondary structure~H, E, C! were
computed. We defineQH as the total number ofa-helix correctly
predicted divided by the total number ofa-helix. We define in the
same mannerQE for b-strands andQC for coils. We computed the
Mathews’ correlation coefficient as well for each state~Mathews,
1975!:

Ci 5
pi ni 2 ui oi

% ~ pi 1 ui !~ pi 1 oi !~ni 1 ui !~ni 1 oi !
with i [ ~H,E,C!

~2!

where

pi 5 number of residues correctly positively predicted to struc-
ture i,

ni 5 number of residues correctly negatively predicted,

ui 5 number of false negatives, and

oi 5 number of false positives.

More recently, it has been proposed~Rost et al., 1994; Zemla
et al., 1999! to use the Sov or segment overlap measure as a
complement to the standard per residue accuracy. The aim of Sov
is to assess “in a more realistic” manner the quality of a prediction.
This is done by taking into account the type and position of sec-
ondary structure segment, the natural variation of segment bound-
aries among families of homologous proteins, and the ambiguity
at the end of each segment. The quality of match of each seg-
ment pair is taken as a ratio of the overlap of the two segments
~minov~Sobs, Spred!! and the total extent of that pair~maxov~Sobs,
Spred!!. The definition allows this ratio to be improved by extend-
ing the overlap by the valued~Sobs, Spred!. In the following for-
mula,S~i ! denotes a pair of overlapping segments~Sobs, Spred! in
conformationi [ ~H, E, C!, S9~i ! denotes the set of all segment
Sobs for which there is no overlapping segmentSpred in statei ~for
further details see Zemla et al., 1999!. To make these computa-

tions, we used the program SOV written by A. Zemla and freely
available from the web site:~http:00PredictionCenter.llnl.gov0local0
ss_eval0sspred_evaluation.html!.

Sov~i ! 5
1

N~i !
(
S~ i !

Fminov~Sobs,Spred! 1 d~Sobs,Spred!

maxov~Sobs,Spred!

3 len~Sobs!G
N~i ! 5 (

S~ i !

len~Sobs! 1 s (
S' ~ i !

len~Sobs!

d~Sobs,Spred! 5 min~maxov~Sobs,Spred! 2 minov~Sobs,Spred!;

minov~Sobs,Spred!; int~len~Sobs!02!;

int~len~Spred!02!!. ~3!

The measures of success were estimated usinga leave-one-out
cross-validation procedure~full Jack-knife!, which is less biased
than a simple n-fold cross validation. As we are using a cascaded
classifier, each stage was carefully tested by Jack-knife to avoid
any overfitting. This means that when assessing the prediction for
protein X belonging to a setS, all the classifiers of the cascade
learn on the subsetS without X.

Furthermore, we used two different test sets to assess our clas-
sifier, the first one comes from the CASP3 competition and con-
tains 23 proteins. This dataset consists of 3,484 residues. The
second one was generated by J. Cuff and G. Barton at the European
Bioinformatics Institute~EBI! using the same procedure as the
training data but on an updated release of the PDB. This dataset
consists of all nonhomologous domains added to the PDB since the
formation of the training set in 1996. This dataset consists of 405
domains.

Predicting secondary structure using GOR methods
and fundamentals

All GOR methods~Garnier et al., 1978, 1996; Gibrat et al., 1987!
are based on the idea of treating the primary sequenceR and the
sequence of secondary structureS as two messages related by a
translation process. This translation process is examined using in-
formation theory~Shannon & Weaver, 1949! and simple Bayesian
statistics. By definition, the information function can be written as
follows:

I ~Sj ; Rj ! 5 lnS P~Sj 0Rj !

P~Sj !
D ~4!

where

ln 5 natural logarithm,

Sj 5 one of the three conformations or classes~H, E, C!,

Rj 5 one of the 20 amino acids at positionj,
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P~Sj0Rj! 5 conditional probability for observing a conforma-
tion Sj having a residueRj ,

P~Sj! 5 prior probability of having a conformationSj .

All these quantities are directly computable from the database.
Applying the Bayes rule and the definition of a probability, it

follows that

P~Sj 0Rj ! 5
f ~Sj , Rj !

f ~Rj !
and P~Sj ! 5

f ~Sj !

N
~5!

wheref are frequencies andN is the total number of residues in the
database.

In theory, the conformation of any residue should depend on the
whole sequence. In practice, the authors of GOR~Robson & Pain,
1971; Garnier et al., 1978, 1996; Gibrat et al., 1987! take into
account only the local sequence around the residue of interest;
namely, they used a window of 17 residues. This means that to
predict the residueRj they use all the residues fromRj28 to Rj18;
beyond these residues the information decreases~Robson & Su-
zuki, 1976!. This window is moved over the whole sequence. In
fact, they compute for each of the three states~H, E, C! the
following information difference, which has to be interpreted as
the discriminant function betweenSj and PSj :

I ~DSj ; Rj28, . . . ,Rj18! 5 I ~Sj ; Rj28, . . . ,Rj18!

2 I ~ PSj ; Rj28, . . . ,Rj18! ~6!

where PSj is the complement of stateSj ; for example, ifSj is C then
PSj is ~H and E!.

In GOR I ~Garnier et al., 1978!, the following approximation is
used for the computation of the information difference:

I ~DSj ; Rj28, . . . ,Rj18!

' (
m5j28

m5j18

I ~DSj , Rj1m!

5 (
m5j28

m5j18SlnS f ~Sj , Rj1m!

f ~ PSj , Rj1m!D1 lnS f ~Sj !

f ~ PSj !
DD ~7!

wheref ~Sj ,Rj1m! is the frequency of conformationS at positionj
when there is a residueR at positionj 1 m. In this approximation,
only the so-called directional information~information a residue
carries about another residue’s secondary structure that does not
depend on the other residue’s type! is taken into account.

In GOR III ~Gibrat et al., 1987!, another approximation is used
for the computation of this function:

I ~DSj ; Rj28, . . . ,Rj18!

' (
m5j28

m5j18

I ~DSj , Rj1m0Rj !

5 (
m5j28

m5j18SlnS f ~Sj , Rj1m, Rj !

f ~ PSj , Rj1m, Rj !
D1 lnS f ~Sj , Rj !

f ~ PSj , Rj !
DD . ~8!

All the information measures were estimated directly from fre-
quencies, since the sample size is large enough to preclude the
need for a Bayesian estimation method~as initially recommended!
~Robson & Suzuki, 1976!. f ~Sj ,Rj1m,Rj! is the frequency of con-
formationSat positionj when there is a residueR at positionj and
R9 at j 1 m. In this approximation, the pair information is taken
into account~information a residue carries about residue’s second-
ary structure that does depend on the other residue’s type!.

For each residue in the protein, three functionsI are computed,
one for each of the three states~H, E, C!.

There are two ways to predict the structure of a residue: predict
the conformation having the highest difference information func-
tion or compute the probability that the residue is in a stateSi 5
~H, E, C! from the information value as follows:

p~Si 0X ! 5
1

11
f ~ PSi !

f ~Si !
e2~I ~DSi , X !!

with X 5 ~Ri28, . . . ,Ri18! andSi [ ~H, E, C!. ~9!

We emphasize that these two ways of assigning the secondary
structure result in two different classifiers, because in one case we
do not take into account the prior probability that a residue has the
conformationSi, while in the second case we do. Figure 1 gives an
example of this.

In GOR IV ~Garnier et al., 1996!, the authors use yet another
approximation to take into account all the possible pairs formed by
each residue in the window. The following approximation is used:

lnSP~Sj ,X!

P~ PSj ,X!D '
2

17 (
m5j28

n.m

m5j18

lnS f ~Sj ,Rj1m,Rj1n!

f ~ PSj ,Rj1m,Rj1n!D
2

15

17 (
m5j28

m5j18

lnS f ~Sj ,Rj1m!

f ~ PSj ,Rj1m!D.

~10!

Here the computation of the probabilitiesP~Sj,X! are straightfor-
ward from this equation. We have performed a reassessment of
these methods in this paper to study the advantages of each method.

Linear discrimination

Fisher’s linear discriminant function dates back to the 1930s. A
dataset withp attributes~such as input values or some function of
the input values! andq possible classes is divided byq2 1 ~p2 1!-
dimensional hyperplanes in such a way as to maximize the number
of data points classified correctly~Weiss & Kulikowski, 1991!. A
quadratic cost function is optimized to choose the “best” hyper-
planes. For two categories, the linear discriminant can be ex-
pressed as a multiple regression. For more than two categories, a
linear discriminant for each class is used. Equal covariance matri-
ces for the different categories are assumed as well as a Gaussian
distribution of the variables.

F~x! 5 ~m1
T 2 m2

T!V21x 1
m2

TV21m2 2 m1
TV21m1

2
1 lnS p~c1!

p~c2!D
~11!
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where

x 5 vector of the attributes,

m1, m2 5 vectors of means of the attributes for classes
1 and 2, respectively,

V 21 5 inverse of the covariance matrix for the pooled
population 1 and 2,

p~c1!, p~c2! 5 prior probabilities for an element belonging
either to class 1 or class 2, respectively,

F~x! 5 linear discriminant function between class 1
and 2, and

Classes 1 and 25 Sj and PSj , respectively.

~The vector of attributes can typically be the set of probabilities
and Information functions computed using the different GOR
methods.!

Quadratic discrimination

Quadratic discriminant functions are similar to linear ones, except
that the boundary can be a “hypercurve” rather than a hyperplane.
No assumption of equal covariance matrices is made, which means
that the algorithm should be robust for cases where the classes
have different covariances~Weiss & Kulikowski, 1991!.

F~x! 5
1

2
xT~V2

21 2 V1
21!x 1 ~m1

T V1
21 2 m2

T V2
21!x

1Sln
6V26102

6V16102
1 lnS p~c1!

p~c2!D1
m2

T V2
21 m2 2 m1

T V1
21 m1

2 D.

~12!

This is different from the linear discrimination in that the two
populations to be discriminated are not pooled: the inverse of
covariance matricesV1

21 and V2
21 are assumed to be different.

Also, a Gaussian distribution is assumed that leads to the previous
quadratic form.F~x! represents the quadratic discrimination func-
tion. We used our own implementation of linear discrimination and
quadratic discrimination for learning.

In both cases, linear and quadratic discrimination, the probabil-
ity that an element~described by the vector of attributesx! belongs
to class 1 rather than class 2 is computed as

p~c10x! 5
1

11 e~2F~x!!
. ~13!

These two standard methods of discrimination are used here for the
combination of outputs from different versions of GOR or from
different neural networks to see if any improvements on the global
accuracy can be achieved.

Neural networks

A neural network learning system is a network of nonlinear pro-
cessing units that have adjustable weights~Fig. 4!. We used stan-
dard three-layered fully connected feedforward networks with the
backpropagation with momentum learning rule used~Press et al.,

1986! to avoid oscillation problems, which are common with the
regular backpropagation algorithm when the error surface has a
very narrow minimum area. The width of the gradient steps was set
to 0.05 and the momentum term was 0.2~Rost & Sander, 1993!.
The initial weights of the neural nets were chosen randomly in the
range of@20.01, 0.01#. The learning process consists of altering
the weights of the connections between units in response to a
teaching signal that provides information about the correct classi-
fication in input terms. The difference between the actual output
and the desired output is minimized~the sum of squares error!.

For a three-layered neural network, the discriminant function
F~x! representing one single output can be written as follows:

F~x! 5 SigmS(
j

nj SigmS(
i

wi, j xi 2 mjD2 moutD
with Sigm~ y! 5

1

11 e2y
~14!

where

x 5 a set of vector of attributes~input signal!,

nj 5 hidden-to-output weights,

wi,j 5 input-to-hidden weights,

mj 5 hidden layer bias values, and

mout 5 output neuron’s bias.

The target outputs are coded as~1 0 0! for a-helices,~0 1 0! for
b-strands, and~0 0 1! for coil states. All the neural networks have
been trained on a set of 445 proteins, and 50 proteins are used to
detect convergence. When convergence is achieved~typically less

Fig. 4. Architecture of the three-layered feed-forward network used. For-
mal neurons are drawn as circles; weights are represented by line connect-
ing the neurons.
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than 40 steps of minimization!, we predict the protein that has been
left out. We use a simple “winner take all” strategy for the clas-
sification ~Rost & Sander, 1993!. It has been shown that the net-
work outputs can be interpreted as estimated probabilities of correct
prediction, and therefore they can indicate which residues are pre-
dicted with high confidence~Riis & Krogh, 1996!.

To generate the neural network architecture and the learning
process, we make use of the SNNS program version 4.2 freely
available from the ftp site, ftp.informatik.uni-stuttgart.de~Zell et al.,
1998!.

We use neural-network classifiers in four different ways:

1. We learn simple sequences using the same coding procedure as
Qian and Sejnowski~1988! and Rost and Sander~1993!.

2. We learn sequence profiles generated from our multiple align-
ment with and without taking gaps into account. For each res-
idue the frequency of occurrence is computed. Each of these 21
real numbers then represents a basic cell of the input layer~20
residues1 1 cell for the gaps!.

3. Following the idea of Jones~1998!, we also used the profile
computed by PSI-BLAST after three iterations. This produces a
different profile, first, because it detects more related sequences
with weak similarity, and second, because the probabilities of
occurrence of an amino acid at a specific position are computed
using more powerful statistics~Tatusov et al., 1994!. This method
uses the prior knowledge of amino acid relationships embodied
in the substitution matrix~blosum62! to generate residue pseudo-
count frequencies, which are averaged with the observed fre-
quencies to estimate the probability that a residue is at specific
position in the query sequence~for more details see Tatusov
et al., 1994; Altschul et al., 1997!. Moreover, the different se-
quences are weighted accordingly to the amount of information
they carry.

4. We use neural networks to combine outputs from different clas-
sifiers ~i.e., different versions of GOR, different networks! to
design more powerful predictors. By combining a set of differ-
ent classifiers in this way, it is possible to obtain an enhanced
predictor, only if the individual classifiers disagree with one
another~Hansen & Salamon, 1990!, which means that some-
how the produced errors are uncorrelated.

We use a window of 13 for both the profiles and single se-
quences, which means that to predict a residue we take into ac-
count the 6 previous residues and the 6 following ones, the predicted
residue being at the central position of the window. The window is
shifted residue by residue through the protein. However, for com-
parison we use as Jones~1998! a window of 17 residues~we tried
also a window of 13 residues and obtained very similar results! to
learn the profiles generated by PSI-BLAST.

Theoretical foundations of the combining approach

The idea of combining multiple classifiers~such as neural net-
works! into a single superior predictor has these recent years re-
ceived great research interest~Rost & Sander, 1993; Bishop, 1995;
Rosen, 1996!. This constitutes probably one of the most leading
advance in machine learning over these last few years. There are
many existing methods for generating multiple classifiers from a
training dataset and many way for combining them~Dietterich,

1997!. In this work, we used different background theories and
resampling techniques to generate multiple classifiers. The ques-
tion of why the combination of an ensemble of classifiers should
a priori perform better can be intuitively answered by the fact that
uncorrelated errors made by different classifiers can be removed
by correctly combining them. Another question that arise imme-
diately is: why shouldn’t we be able to find a single classifier that
performs as well as an ensemble?

This question can be answered in three points~Dietterich, 1997!:
~1! The training data may not provide sufficient information to
choose a single best classifier, and instead different “hypotheses”
appear to be equally accurate.~2! The chosen learning algorithm
may not be able to solve correctly the search problem that we pose.
For example, neural network algorithms employ local search meth-
ods.~3! Our hypothesis space may not contain the true function.
Instead, this space may contain different approximations.

Given that we have trained an ensemble of classifiers, how
should we combine their individual classification decisions? The
existing methodologies can be subdivided into unweighted vote,
weighted vote, gating network, and combination via stacking.

1. The simplest approach is to take an unweighted vote~Clemen,
1989!. One refinement on simple majority vote is when each
classifier can produce class probabilities. It is then possible to
average these probabilities and choose the class having the
highest probability. This is the strategy adopted by the program
PHD ~Rost & Sander, 1993!.

2. Many different weighted voting methods have been developed
for ensembles~Perrone & Cooper, 1993!. For classification
problems, weights are usually obtained by measuring the accu-
racy of each individual classifierCi and constructing weights
that are proportional to those accuracies~Ali & Pazzani, 1996!.

3. Another approach for combining classifiers is to learn a gating
network or a gating function that takes the input features vector
x and produces as output the weights to be applied to compute
the weighted vote of the classifiers~Jordan & Jacobs, 1994!.
The output of each classifier is a probability distribution over
all the possible classes while the output of the gate is a prob-
ability distribution over the classifiers.

4. A procedure called “stacking” can be used. Having different
classifiers trained on a set of training examples. The goal of
stacking is to learn a good combining classifier. Wolper~1992!
proposed the following scheme for learning using a form of
leave-one-out cross validation. The output of each classifier
obtained using the leave-one-out cross-validation procedure gives
a new dataset of “level 2” examples. Now we can apply some
other learning algorithm to this level 2 data to obtain a more
accurate classification. Breiman~1996! applied this approach to
combine different forms of linear regression with good results.
Stacking can be used either to combine models or to improve a
single model. In this paper, we have more particularly investi-
gated a stacking method consisting of four levels and we show
how this technique can be successfully use to improve the
prediction.
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