Feature Selection, Perceptron Learning, and

a Usability Case Study for Text Categorization

Hwee Tou Ng
DSO National Laboratories
20 Science Park Drive
Singapore 118230
nhweetou@dso.org.sg

Abstract

In this paper, we describe an automated learning approach
to text categorization based on perceptron learning and a
new feature selection metric, called correlation coefficient.
Our approach has been tested on the standard Reuters text
categorization collection. Empirical results indicate that our
approach outperforms the best published results on this Re-
uters collection. In particular, our new feature selection
method yields considerable improvement.

We also investigate the usability of our automated learn-
ing approach by actually developing a system that categor-
izes texts into a tree of categories. We compare the accuracy
of our learning approach to a rule-based, expert system ap-
proach that uses a text categorization shell built by Carne-
gie Group. Although our automated learning approach still
gives a lower accuracy, by appropriately incorporating a set
of manually chosen words to use as features, the combined,
semi-automated approach yields accuracy close to the rule-
based approach.

1 Introduction

We live in a world of information explosion. The phenomenal
growth of the Internet has resulted in the availability of huge
amounts of online information. Much of this information is
in the form of natural language texts. Hence, the ability
to catalog and organize textual information automatically
by computers is highly desirable. In particular, a computer
system that can categorize real-world, unrestricted English
texts into a predefined set of categories would be most useful.

In this paper, we present an automated learning approach
to building a robust, efficient and practical text categoriza-
tion system, called CLASSI, using the perceptron learning
algorithm. We also describe a new feature selection metric,
called correlation coefficient, which yields considerable im-
provement in categorization accuracy. When tested on the
standard Reuters text categorization collection, our approach
outperforms the best published results on this Reuters cor-
pus.

We also conducted a usability case study by comparing

Wei Boon Goh
Ministry of Defence
Gombak Drive
Singapore 669638

Kok Leong Low
Ministry of Defence
Gombak Drive
Singapore 669638

the performance of such an automated learning approach
with the more traditional, rule-based “expert system” ap-
proach of building text categorization systems. In the rule-
based expert system approach, the developer of the system
manually codes up a set of rules to categorize texts. In
contrast, our learning approach alleviates the knowledge ac-
quisition bottleneck inherent in a rule-based approach.

As comparison, we use an existing text categorization
system, T'CS, developed using a text categorization shell built
by Carnegie Group [Hayes et al., 1990]. The input to TcS
are newswire articles and the output categories form a tree.
Our evaluation indicates that a completely automated learn-
ing approach still gives lower accuracy. However, by manu-
ally modifying and augmenting the set of words to be used
as features in a topic categorizer, we achieve accuracy very
close to the manual rule-based approach. This suggests that
at present, a semi-automated approach is perhaps the best
way to build a high performance text categorization system.

The rest of this paper is organized as follows. Section 2
gives a description of the text categorization task. Section 3
discusses the text representation and feature selection met-
ric used. Section 4 describes the perceptron algorithm used.
Section 5 presents the empirical results achieved by our ap-
proach on the standard Reuters corpus. Section 6 describes
the case study conducted to compare our automated learning
approach with T¢cs. This is followed by Section 7 on related
work, and Section 8 gives the conclusion.

2 Task Description

The input to our text categorization system, called CLASSI
(CLASsification System for Information), consists of unres-
tricted English texts. The system is also given a set of pre-
defined categories. There is no restriction as to what can
form a category. For example, a category can be about a
particular country (like USA, Japan), a particular subject
topic (like economics, politics), etc. One text can belong to
more than one categories if it mentions multiple topics (like
in a long text). Also, the categories need not be exhaustive
— some text may belong to none of the pre-defined set of
categories.

Unlike most existing work on text categorization, we al-
low the categories to form a tree. We will describe in greater
detail how hierarchical categorization is achieved when we
discuss the usability case study in Section 6.

Given an input text, a text categorization system assigns
z€ero, one or more categories to the text.

3 Text Representation and Feature Selection

To use an automated learning approach, we first need to
transform a text into a feature vector representation. This
transformation process requires the appropriate choice of fea-
tures to use in a feature vector. These feature vectors form
the training examples. Feature vectors that are derived from
the relevant texts of a category C form the positive training
examples for the category, while the feature vectors derived
from the irrelevant texts of category C form the negative ex-
amples. Next an automated learning algorithm learns the
necessary association knowledge from the training examples
to build a classifier for each category C. In this section, we
focus on the text representation and feature selection issues,
while the next section discusses the perceptron learning al-
gorithm used.

We use single words as the basic units to represent text.
A “word” is defined as a contiguous string of characters de-
limited by spaces. Specifically, each text is pre-processed in
the following steps:

1. Punctuation marks are separated from words.
2. Numbers and punctuation marks are removed.
3. All words are converted to lower case.

4. Words like prepositions, conjunctions, auxiliary verbs,
etc., are removed. These 290 stop words are those
given in [Lewis, 1992].

5. Each word is replaced by its morphological root form.
For example, plural nouns like “interests” are replaced
with the singular form “interest”, inflectional verb forms
like “ate”, “eaten”, “eating”, etc., are replaced with the
infinitive form “eat”, and so on.

We use the morphological routines from WORDNET [Miller,
1990] to convert each word into its morphological root form.
The preprocessing speed of CLASSI is fast — about 4,000
words per second on a Pentium personal computer.

The remaining words after preprocessing are potential
candidates for use as features, with each word as one feature
in the feature vectors. Feature selection refers to the pro-
cess of choosing a subset of these remaining words to use as
features to form the training examples.

Previous research on text categorization [Apte et al., 1994]
suggests two possible ways in which the words to be used
as features can originate: from the relevant texts only (local
dictionary), or from both the relevant and irrelevant texts
(universal dictionary). Apte et al. reported results indicat-
ing that local dictionary gives better performance. In our
work, we also found that local dictionary gives better accur-
acy. In particular, results from our case study show that
local dictionary gives considerably higher performance (see
Section 6). Hence, we only use the local dictionary method
on the Reuters corpus.

We also require a word to occur at least five times in
the training texts to be chosen as a feature. This measure
is quite widely used, for example in the work of [Hearst et
al., 1996] and [Lewis and Ringuette, 1994]. This is beneficial
since infrequent words are not reliable indicators for use as
features.

After words are chosen according to the local dictionary
method, and after eliminating words with infrequent occur-
rence, we select a set of n features by applying a feature
selection metric. The features chosen are the top n features

with the highest feature selection metric score. We experi-
mented with three feature selection metrics: correlation coef-
ficient, x*, and frequency.

We define the correlation coefficient C of a word w as:

(N4 No— — Np— Ny WN

V(Ne + Ne2) (Nt + Noo) (Nt + Nt)(Nr— + Nia)

where Ny; (Np4) is the number of relevant (non-relevant)
texts in which the word w occurs, and N,_ (N,_) is the
number of relevant (non-relevant) texts in which the word w
does not occur.

Our correlation coefficient is a variant of the yv? metric
used in [Schutze et al., 1995], where C*> = x%. C can be
viewed as a “one-sided” y? metric. The rationale behind
the use of our new correlation coefficient C is related to the
finding that local dictionary yields a better set of features
as reported in [Apte et al., 1994] (and confirmed in our own
work). That is, we are looking for words that only come
from the relevant texts of a category C' and are indicative
of membership in C. Words that come from the irrelevant
texts or are highly indicative of non-membership in C are
not as useful. The correlation coefficient C selects exactly
those words that are highly indicative of membership in a
category, whereas the y® metric will not only pick out this
set of words but also those words that are indicative of non-
membership in the category. Our empirical results suggest
that using words from the relevant texts and are indicative
of membership in a category is better than using words that
are indicative of membership as well as non-membership of
a category.

The third feature selection metric we experimented is fre-
quency, which selects words that occur most frequently in the
training texts to use as features.

The value of a feature in a feature vector is the normalized
frequency of the corresponding word in the training text. We
use normalized frequencies so that training texts of different
lengths are normalized to contribute equally during training.

Let t1,t2,...,t, be the set of words chosen as features
when building the classifier for a category C. Then

(t f1)(t2 f2) - (tn Fn)

is the derived training example, where f; is a normalized
frequency.

When training the classifier for a category C, we use
all the texts in the training corpus that belong to C' as the
positive training texts. On the other hand, it is often the
case that there are many non-relevant texts not belonging
to category C in the training corpus. We employ the same
technique described in [Hearst et al., 1996] to select a subset
of the non-relevant texts to use as the negative training texts.
These texts are the most relevant non-relevant texts. First
we form the vector sum of all the positive training vectors.
Then the negative training vectors are ranked by their dot
product score with the positive aggregate vector. The higher
the dot product score, the more relevant the negative text is
to the category.

4 Perceptron Learning

Having chosen a word-frequency list representation of text,
we now consider the task of building a classifier for a category
C. Let t1,t2,...,tn be the set of words chosen as features
based on a set of training texts for C, as described in the
last section. Given a new text T' to be classified, CLASSI

first pre-processes the text as described earlier. The feature
vector representation of the new text 7' is

(tr f1)(t2 f2) - - (tn Fn)

where fi1,..., fn are the normalized frequencies of the word
occurrences in 7.

Our classifier arrives at a classification decision by finding
an appropriate set of real-valued weights wo, w1, . .., w, such
that

Dwixf; >0
=0

if and only if T" belongs to category C. (We let fo = 1in
computing the weighted sum of frequencies.)

As our classifier arrives at a decision by taking a lin-
early weighted summation, it functions as a linear threshold
unit (LTU). That is, our classifier is a linear classifier. The
perceptron learning algorithm (PLA) [Rosenblatt, 1958] is a
well-known algorithm for learning such a set of weights for
an LTU, and we use this algorithm in CLASSI.

Let F1, Ea, ..., E; be the positive examples derived from
the relevant texts of category C, and let Fit1, Fiyo,..., Em
be the negative examples derived from the non-relevant texts
not of category C. Let F; be of the form

(t fi)(t2 fiz) o (tn fin)

We set f;, =1for e =1,..., m. The goal of the perceptron

learning algorithm is to find a set of weights wo, w1, ..., wn
such that
n
> wyx fiy 20 1<i<l
=0
and

I+41<i<m

n
Z’wj *f,‘j <0
j=0

Although PLA is a well-known algorithm, for complete-

ness sake, we give here a formal description of PLA in Table 1.

PLA is essentially a hill-climbing, gradient-descent search
algorithm. It starts with a random set of weights and iterat-
ively refines the weights to minimize the number of misclas-
sified examples. n is a constant that controls the learning
rate. We set n = 0.35 in all our evaluation runs. Since
PLA may not converge or converge too slowly in practice,
we also set the maximum number of iterations to 300 in all
our evaluation runs.

Note that as part of the process of deciding whether a
new text belongs to a category, the classifier computes a
linearly weighted summation Z;;O wj * f;. This weighted
sum can be taken as a measure of the degree of membership
of a text in a category. As such, besides being able to decide
whether a new text belongs to a category, we can also use
this weighted sum to rank a set of new texts from the most
closely matching text to the least matching text.

We define recall (R) as the ratio of truly relevant texts
that are classified by CLASSI as relevant, and precision (P)
as the ratio of texts classified as relevant by CLASSI that are
truly relevant.

1. Initialize the weights W = (wo w wy) to

random real values.

2. Compute the weighted sum of frequencies for
all training examples Fj:

n
Sues,
=0

3. If all positive examples have non-negative sum
and all negative examples have negative sum,
then output the weights and stop.

4. Else compute the vector sum S of the
misclassified examples. That is, if F; is a
positive example that is misclassified as
negative, then

S« S+ (fio fir -+ fin)

Conversely, if F; is a negative example that
is misclassified as positive, then

S« S—(fio fir --- fin)

5. Update the weights as follows and go to step
2:

WeW+5-n

where n is a constant scale factor.
Table 1: The perceptron learning algorithm

5 Reuters Test Corpus

In order to compare the performance of CLASSI with other
state-of-the-art text categorization systems, we tested CLASSI
on a standard test collection for text categorization used in
the literature. This collection of texts, known as Reuters-
22173, consists of Reuters newswire articles about financial
categories [Lewis, 1992].! This text corpus has about 3.4
million words (occupying 23 MB) with 135 categories and
22,173 texts.

We used the same training/testing set split of [Apte et al.,
1994]. First, 723 texts used as testing in a separate study are
removed from consideration. Of the remaining texts, some
do not have any category assigned to them. After ignoring
such texts, the training set consists of 10,666 texts (dated
on or before 7 April 87) and the testing set consists of 3,679
texts (dated on or after 8 April 87). Asin [Apte et al., 1994],
we consider only 93 categories which occur more than once
in the training texts.

For the Reuters corpus, we choose the features using the
local dictionary method, which was found to yield better res-
ults on this corpus by [Apte et al., 1994]. That is, the words
are only taken from the positive training texts. For each
category C, we used all training texts belonging to C' as the

! Available b, anonymous ftp from
ftp.cs.umass.edu at /pub/doc/reutersl, courtesy of Reuters, Carne-
gie Group, and David Lewis.

positive examples of C, and the top 3000 most relevant non-
relevant texts as the negative examples of C. The technique
to pick the most relevant non-relevant texts are described in
Section 3.

The number of features chosen is an important parameter
that affects the performance of CLASSI on the Reuters corpus.
We experimented with several different number of features as
listed in Table 2. We also show the effect of the three feature
selection methods used. The accuracy measure in Table 2
is the micro-averaged break-even points, the same measure
as used in [Lewis and Ringuette, 1994]. At a break-even
point, recall and precision are the same. Micro-averaging
combines the recall and precision values of all the categories
by summing the true positive, true negative, false positive,
and false negative counts across all categories.

From Table 2, it is evident that our new feature selec-
tion method based on correlation coefficient consistently out-
performs the yv? and frequency selection method at all fea-
ture sizes. Also, performance improves as more features are
used. We plan to investigate more thoroughly the relation-
ship between feature set size and performance, and finding
the optimal feature set size where the performance peaks.
As the number of features used has a significant impact on
accuracy, it may be beneficial to apply cross-validation tech-
niques like those of [Kohavi and John, 1995] to automatically
determine the best number of features to use for each cat-
egory from the training examples.

Previous published test results on this training/testing
set split of the Reuters corpus include the system SWAP-1
of [Apte et al., 1994], RIPPER and EXPERTS of [Cohen and
Singer, 1996], and an implementation of Rocchio’s algorithm
[Rocchio, 1971] by Cohen and Singer [Cohen and Singer,
1996].

We list in Table 3 the best micro-averaged break-even
points achieved by CLASSI, RIPPER, SWAP-1, EXPERTS and
Rocchio. The accuracy figures listed are based on represent-
ations that do not give special treatment to the headlines of
a text. CLASSI outperforms all previously published results
on the Reuters corpus.

Wiener et al. [Wiener et al., 1995)] also tested their neural
network approach on the Reuters corpus. Although they
reported break-even point of 0.820, the list of categories they
consider is different from the 93 categories reported here and
so the results are not directly comparable. For example, they
consider categories like cbond, loan, ebond, gbond, thill and
tbond which are not among the 93 categories considered in
our present study. (See the list of 135 categories in Figure
8.1, Chapter 8 of [Lewis, 1992] from which the 93 categories
are chosen.)

6 A Usability Case Study

To evaluate the usability of our automated learning approach,
we also conducted a case study by comparing the perform-
ance of our approach with an existing text categorization
system. This system, called TS, was built using a text cat-
egorization shell developed by Carnegie Group [Hayes et al.,
1990]. Tcs was built using a rule-based expert system ap-
proach. The input to T'CcS are daily newswire articles. The
output categories of T'CS form the leaf nodes of a tree. A
fragment of this hierarchical organization of the categories is
shown in Figure 1. The first level denotes the division into
various countries, such as USA, Japan, Australia, etc. The
second level denotes the division into primary subject topics,
such as economics, politics, etc. The third level denotes de-
tailed subject topics, such as the subdivision of politics into

law and political party. As an example, a text that talks
about passing a legislative bill in the US Senate will come
under the leaf category USA-politics-law. There are 160 leaf
categories in T'CS. It took about 1.5 person-years to develop
the rules needed for categorization in TcCS.

To achieve hierarchical categorization, CLASSI forms the
internal, non-leaf categories. An internal, non-leaf category
denotes the union of all its children categories. CLASSI builds
one classifier for each category (leaf and non-leaf node) in
the tree. The output categories of an input text can be zero,
one or more leaf categories in the tree. When an input text
is presented to CLASSI, it first checks for each country at
the top level to see if the text belongs to any of the coun-
try category. If not, then the text does not belong to any
category. However, if a text belongs to a country according
to the classifier built for that country category, CLASSI then
recursively checks for membership in the categories of the
subtree rooted at that country category. If at any node, it is
determined that the input text does not belong to any of its
children categories, then categorization stops for that branch
of the recursion. The recursive process terminates at a leaf
category.

As the number of categories increases, this hierarchical
approach to categorization is more efficient than a linear ap-
proach which considers every category sequentially. To our
knowledge, no previous work on text categorization dealt
with a tree or hierarchy of categories.

The positive training texts of a leaf category C' are the rel-
evant texts of category C. For a non-leaf, internal category
C, the positive training texts are taken from the descend-
ant leaf node categories under C, with an equal number of
texts from each descendant leaf node category. We used 100
positive training texts for each category.

For negative training texts of a category C, we used the
positive training texts that belong to the sibling categories of
C. For example, for the category USA-economics, we used
texts belonging to USA-politics-law, USA-politics-party, etc.
as the negative training texts. We used 200 negative train-
ing texts for each category, selecting the most relevant non-
relevant texts if more than 200 negative texts are available.

The total size of our training corpus is about 20MB. Since
we do not have training texts with their assigned categories
verified by human, the categories of the training texts that
we use to train CLASSI are those assigned automatically by
the T'CS system. Since these training text categories are only
about 75% accurate, the use of such noisy training corpus
tends to lower the accuracy of CLASSI.

The number of features in the training examples we used
for the first, second and third level of the category tree is
10, 200, and 200, respectively. We used only 10 features
for a country category since it tends to have only a smaller
number of indicative features.

To compare the accuracy of CLASSI versus T'CS, we manu-
ally assigned the correct categories to a new, randomly chosen
set of 350 texts not used in the training corpus. The size of
this test corpus is about 100,000 words.

Table 4 lists the performance figures of successive ver-
sions of CLASSI as compared to Tcs. The F-measure [Rijs-
bergen, 1979] is defined as

_ 2PR
~ P+R

where P is the precision and R is the recall. We use the
F-measure that gives equal weightage to both recall and pre-
cision.

Feature Selection | 20 features | 50 features | 100 features | 200 features
Correlation coeff. 0.784 0.792 0.799 0.802
X2 0.742 0.771 0.790 0.794
Frequency 0.717 0.763 0.778 0.785

Table 2: Effect of Feature Selection Method and Feature Set Size on Break-even point

System Option Break-even point
CLASSI 200 features 0.802
RIPPER negative tests 0.796
SWAP-1 | 80-100 freq feat. 0.789
EXPERTS | 3-words 0.759
Rocchio 0.745

Table 3: Results on the Reuters test corpus

USA Japan Australia
economics politics economics politics ...
communication industry ... law party ..
Figure 1: The tree of categories
Method Recall | Precision | F-measure
(1) +,- texts; freq. 0.163 0.072 0.100
(2) + texts; freq. 0.467 0.203 0.283
(3) + texts; x* 0.452 0.427 0.439
(4) + texts; corr. coeff. 0.482 0.463 0.472
(5) words from children cat. | 0.495 0.475 0.485
(6) two-cycle generation 0.533 0.512 0.522
(7) manual features 0.736 0.719 0.728
Tcs 0.778 0.694 0.733

Table 4: Successive improvements to CLASSI and Comparison with Tcs

Version (1) of CLASSI listed in Table 4 uses universal
dictionary where the features come from both positive and
negative training texts, and relies on frequency to select the
features. Its F-measure performance is only 0.1. Versions
(2) - (4) switch to using local dictionary where the features
are taken from the positive training texts only. Versions (2),
(3) and (4) use the frequency, x?, and correlation coefficient
metric, respectively, to select the features. Again, correlation
coefficient achieves higher accuracy compared with the y?
and frequency metrics.

In version (5) of CLASSI, we add to version (4) the follow-
ing: for the second level categories (general subject topics)
in the category tree, CLASSI uses the features from the leaf
children categories of a subject category C as C’s features.
This results in a moderate improvement in accuracy.

From version (5), we added a new training method, called
two-cycle generation, to yield version (6) of CLASSI. This
new training method is related to the rationale of wanting to
use only words that are indicative of membership of a cat-
egory, and not words that are indicative of non-membership.
This is the same rationale behind the use of local dictionary
and our correlation coefficient. Basically, in two-cycle gen-
eration, after a set of features is chosen and a classifier is
formed by the perceptron learning algorithm, we discard the
features with negative weights assigned by the perceptron
learning algorithm. The remaining set of features then form
the final set of features used, and the perceptron algorithm is
applied again to learn a new classifier. This two-cycle gener-
ation method yields considerable improvement in accuracy,
as shown in Table 4.

Up till version (6), we have applied completely automated
learning techniques, with no special use of domain-specific
or manual efforts. We achieved an F-measure accuracy of
0.522, which is still substantially lower than the accuracy of
0.733 achieved by Tcs. We now decide to use some manual
engineering efforts. In particular, we incorporate a set of
manually chosen words to use as features, but only for the
country categories at the top level of the category tree. This
manually chosen set of words is obtained by pruning some
of the non-indicative words found by our automated learning
method, and adding the words that were used in T ¢S for the
country categories. Using these manually chosen words as
features, and the same set of training texts as in previous
versions, we obtained version (7) of CLASSI. The perform-
ance of CLASSI now reaches 0.728, which is only about 0.5%
below the accuracy of 0.733 achieved by Tcs. This result
is encouraging, especially considering that the training texts
used by CLASSI is noisy (since the training categories are
assigned by T¢S which contain mistakes).

Thus, our case study suggests that at present, a semi-
automated approach is perhaps the best way to build a high
performance text categorization system. FExisting learning
methods are good at tuning a set of weights, compared with
manual engineering of weights. However, feature selection
methods are still not good enough, especially for training
sets of smaller size, in order for a useful set of features to be
selected.

The categorization speed of CLASSI is quite fast. A daily
collection of newswire articles, averaging about 2,000 texts
and more than 500,000 words (more than 3.5MB) takes only
about 40 minutes to be categorized on a Pentium PC. Hence,
CLASSI is a practical system that runs efficiently.

7 Related Work

Many learning methods have been applied to text categor-
ization [Schutze et al., 1995], including decision rule induc-
tion [Apte et al., 1994], decision tree induction [Lewis and
Ringuette, 1994], nearest neighbor algorithms [Masand et
al., 1992], Bayesian classifiers [Lewis and Ringuette, 1994],
discriminant analysis [Hull, 1994], neural networks [Schutze
et al., 1995; Wiener et al., 1995; Lewis et al., 1996], etc.
Schutze et al. and Wiener et al. made use of non-linear
neural networks, but reported only a slight improvement in
accuracy over the use of linear neural networks. The activa-
tion function used in the linear neural network of [Schutze et
al., 1995; Wiener et al., 1995; Lewis et al., 1996] is the sig-
moid activation function, while our perceptron uses a step-
wise (0-1) activation function. To our knowledge, none of the
previous work has used the perceptron learning algorithm
in text categorization. We used the perceptron algorithm
since it has been shown to achieve surprisingly high accuracy
[Mooney et al., 1989], and it has very fast training time (at
least an order of magnitude faster compared with the back-
propagation algorithm of non-linear neural networks), mak-
ing it a good choice for building a practical text categoriza-
tion system. However, we do not claim that the perceptron
algorithm 1is the best learning algorithm to use for text cat-
egorization. More experimentation needs to be done to eval-
uate the relative strength of various learning algorithms.

Our new correlation coefficient is based on a variation of
the y? metric used in [Schutze et al., 1995]. To our know-
ledge, none of the previous work has adopted the use of such
a correlation coefficient for feature selection in text categor-
ization. It appears that the improvement resulting from the
use of better feature selection methods is at least as sig-
nificant as the improvement achieved from better learning
algorithms.

Finally, no previous work has reported the comparative
accuracy of a semi-automated learning approach with the
manual, rule-based expert system approach.

8 Conclusion

We have successfully built a robust, efficient and practical
text categorization system, CLASSI, using the perceptron
learning algorithm. Our evaluation has shown that CLASSI
outperforms existing approaches on the standard Reuters
corpus. The use of a new correlation coefficient in feature
selection results in considerable improvement in categoriz-
ation performance. We also conducted a case study which
indicates that a semi-automated approach can achieve cat-
egorization performance close to the manual, expert system
approach of building text categorization systems.

References

[Apte et al., 1994] Chidanand Apte, Fred Damerau, and
Sholom M. Weiss. Automated learning of decision rules
for text categorization. ACM Transactions on Informa-
tion Systemns, 12(3):233-251, July 1994.

[Cohen and Singer, 1996] William W. Cohen and Yoram
Singer. Context-sensitive learning methods for text cat-
egorization. In 19th International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, 1996.

[Hayes et al., 1990] P.J. Hayes, P.M. Andersen, I.B. Niren-
burg, and .M. Schmandt. TCS: A shell for content-based

text categorization. In Proceedings of the Sizth IEFE Con-
ference on Artificial Intelligence Applications, pages 320—
326, 1990.

[Hearst et al., 1996] Marti Hearst, Jan Pedersen, Peter Pir-
olli, Hinrich Schutze, Gregory Grefenstette, and David
Hull. Xerox TREC4 site report. In Proceedings of the
Fourth Text Retrieval Conference TRFEC-/, 1996.

[Hull, 1994] David Hull. Improving text retrieval for the
routing problem using latent semantic indexing. In 17th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1994.

[Kohavi and John, 1995] Ron Kohavi and George H. John.
Automatic parameter selection by minimizing estimated
error. In Machine Learning: Proceedings of the Twelfth
International Conference, 1995.

[Lewis and Ringuette, 1994] David Lewis and Marc
Ringuette. A comparison of two learning algorithms for
text categorization. In Symposium on Document Analysis
and Information Retrieval, 1994.

[Lewis et al., 1996] David D. Lewis, Robert E. Schapire,
James P. Callan, and Ron Papka. Training algorithms for
linear text classifiers. In 19th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 1996.

[Lewis, 1992] David Lewis. Representation and Learning in
Information Retrieval. PhD thesis, Dept of Computer and
Information Science, Univ of Massachusetts at Ambherst,
1992.

[Masand et al., 1992] Brij Masand, Gordon Linoff, and
David Waltz. Classifying news stories using memory
based reasoning. In 15th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 1992.

[Miller, 1990] George A Miller. Five papers on WordNet.
International Journal of Lexicology, 3(4), 1990.

[Mooney et al., 1989] Raymond J. Mooney, Jude W. Shav-
lik, G. Towell, and A. Gove. An experiemental comparison
of symbolic and connectionist learning algorithms. In Pro-
ceedings of the Fleventh International Joint Conference
on Artificial Intelligence, pages 775-780, 1989.

[Rijsbergen, 1979] C. J. Van Rijsbergen. Information Re-
trieval. Butterworths, London, 1979.

[Rocchio, 1971] J. Rocchio. Relevance feedback inform-
ation retrieval. In Gerard Salton, editor, The Smart
Retrieval System - FExperiments in Automatic Docu-
ment Processing, pages 313-323. Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

[Rosenblatt, 1958] F. Rosenblatt. The perceptron: A prob-
abilistic model for information storage and organization in
the brain. Psychological Review, 65:386-408, 1958.

[Schutze et al., 1995] Hinrich Schutze, David A. Hull, and
Jan O. Pedersen. A comparison of classifiers and doc-
ument representations for the routing problem. In 18th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1995.

[Wiener et al., 1995] Erik Wiener, Jan O. Pedersen, and
Andreas S. Weigend. A neural network approach to topic
spotting. In Symposium on Document Analysis and In-
formation Retrieval, 1995.

